
Name:
Math 433/833 Assignment # 5

Assigned: 2016.03.03
Due: 2016.03.10

Thanks to Gary Wright for writing up some of these solutions.
Note 1: This assignment involves coding. It is OK to talk with other people,
but please write your own code. It is very obvious when one person just copies
another persons code, or reproduces something they found on the internet without
understanding it. (It is especially obvious when you ask them to explain their code!)
So, try to code things by yourself, talking to other people or checking other resources
only if you get really stuck. This will make you stronger! Also, staring at code for
a few minutes and being confused does not count as getting stuck. This is part of
coding! Progress is usually not continuous. Programming is a puzzle that you solve,
not a bucket that you fill.
Note 2: Next week on 2016.03.10 (i.e., Thursday March 10th), we will learn about
another tool to make your codes even faster for certain types of matrices. We will
have a short bonus assignment over that weekend which is a contest to see who
can code the best and fastest solver! The details of this contest will be released on
2016.03.10. In the meantime, try to make your codes as good as possible to be ready
for the contest!

-1. Review the Gram-Schmidt method from Linear Algebra.

0. Read sections 12.1, 12.2, 13.1, 13.2 in the book. You might also want to read
my notes on Steepest Descent, posted on the webpage at:
www.math.unl.edu/~alarios2/courses/2016_spring_M433/content.shtml

1. Page 408, #2.1. Do the calculations by hand (show your work). This will
help you understand what is going on, and give you a feeling for how fast the
computations are. Think about what the matrix A and the vector b are in this
problem.

Use the steepest-descent method to solve: minimize f(x1, x2) = 4x21 + 2x22 +
4x1x2 − 3x1, starting from the point (2, 2)T . Perform three iterations.

Solution. First we’ll need to find what A and ~b are. We can find A by finding
the Hessian of f and we can find ~b, by finding the gradient and considering the
values which contain no variables. Doing this we get:

A =

(
8 4
4 4

)
and ~b =

(
3
0

)
Next, we’ll perform the three iterations of steepest-descent.

www.math.unl.edu/~alarios2/courses/2016_spring_M433/content.shtml


Name:
Math 433/833 Assignment # 5

Assigned: 2016.03.03
Due: 2016.03.10

first iteration:

~r0 = ~b− A~x0 =

(
3
0

)
−
(

8 4
4 4

)(
2
2

)
=

(
−21
−16

)

α0 =
~r0

T ~r0
~rT0 A~r0

=

(
−21
−16

)T (
−21
−16

)
(
−21
−16

)T (
8 4
4 4

)(
−21
−16

) ≈ 0.09627

~x1 = ~x0 + α0~r0 =

(
2
2

)
+ 0.09627

(
−21
−16

)
≈

(
−0.02169
0.45967

)
second iteration:

~r1 = ~b− A~x1 =

(
3
0

)
−
(

8 4
4 4

)(
−0.02169
0.45967

)
≈

(
1.33481
−1.75193

)

α1 =
~r1

T ~r1
~rT1 A~r1

=

(
1.33481
−1.75193

)T (
1.33481
−1.75193

)
(

1.33481
−1.75193

)T (
8 4
4 4

)(
1.33481
−1.75193

) ≈ 0.62011

~x2 = ~x1 + α1~r1 =

(
−0.02169
0.45967

)
+ 0.62011

(
1.33481
−1.75193

)
≈

(
0.80604
−0.62672

)
third iteration:

~r2 = ~b− A~x2 =

(
3
0

)
−
(

8 4
4 4

)(
0.80604
−0.62672

)
≈

(
−0.94144
−0.71728

)

α2 =
~r2

T ~r2
~rT2 A~r2

=

(
−0.94144
−0.71728

)T (
−0.94144
−0.71728

)
(
−0.94144
−0.71728

)T (
8 4
4 4

)(
−0.94144
−0.71728

) ≈ 0.09627

~x3 = ~x2 + α2~r2 =

(
0.80604
−0.62672

)
+ 0.09627

(
−0.94144
−0.71728

)
≈

(
0.71541
−0.69577

)



2. Code the Steepest Descent algorithm. First try the “Näıve form” we saw in
class, then the “improved form”. Is one actually faster than the other? Does
the speed depend on anything, such as the matrix size, etc.? If so, when at
what size can you see a difference? To keep things uniform, please start you
code like this:

1 function [x,iter] = steepestDescent(A,b,x0 ,maxIter ,tol)

2 % Use Steepest Descent algorithm to solve Ax = b.

where x0 is the initial guess. maxIter is the maximum number of iterations,
and tol is the tolerance. The code should stop once maxIter iterations have
occured, or the desired level of accuracy is reached, determined by the tolerance
tol. It is up to you what to base the tolerance on though (make it reasonable
though).

Solution. Answers may vary considerably. Below is one possible solution.

1 function [x,iter] = steepestDescent(A,b,x0 ,maxIter ,tol)

2 % Use Steepest Descent algorithm to solve Ax = b.

3 % Example usage:

4 % n = 100; A = rand(n) -0.5; A = A'+A+n*eye(n);
5 % x = rand(n,1); b = A*x;

6 % [x_sd ,iter] = steepestDescent(A,b,b,100,1e-6);

7 % display ([norm(x-x_sd)/norm(x),iter ]);

8
9 x = x0;

10 r = b-A*x;

11 for iter = 1: maxIter

12 r_sq = r'*r;
13 if (r_sq < tol)

14 break

15 end

16 Ar = A*r;

17 alpha = r_sq/(r'*Ar);
18 x = x + alpha*r;

19 r = r - alpha*Ar;

20 end

Näıve version of the algorithm:



Name:
Math 433/833 Assignment # 5

Assigned: 2016.03.03
Due: 2016.03.10

1 function [x,iter] = steepestDescentNaive(A,b,x0,maxIter ,tol)

2 % Use Steepest Descent algorithm to solve Ax = b.

3 % Example usage:

4 % n = 100; A = rand(n) -0.5; A = A'+A+n*eye(n);
5 % x = rand(n,1); b = A*x;

6 % [x_sd ,iter] = steepestDescentNaive(A,b,b,100,1e-6);

7 % display ([norm(x-x_sd)/norm(x),iter ]);

8
9 x = x0;

10 for iter = 1: maxIter

11 r = b-A*x;

12 r_sq = r'*r;
13 if (r_sq < tol)

14 break

15 end

16 alpha = r'*r/(r'*(A*r));
17 x = x + alpha*r;

18 end

Next, test you code, maybe try something like this:

1 % A program to test linear solvers.

2 n = 100;

3 L = tril(rand(n,n)); % Random lower -triangular matrix

4 A = L*L'; % Random SPD matrix;

5 x_exact = rand(n,1); % Random vector (the exact solution)

6 b = A*x_exact; % Now x_exact is the exact solution of Ax = b.

7 tic; % Mark the starting time

8 %

9 % Here , call your steepestDescent program to solve Ax = b

10 % WITHOUT using x_exact. Find x and the number of iterations.

11 %

12 time = toc;

13 error = norm(x_exact - x)/norm(x);

14 output_string = 'Error = %g, time = %g, iterations = %d';
15 display(sprintf(output_string ,error ,time ,iter ));

3. Plot a graph of the matrix size n vs. the number of iterations for tolerance
tol = 1e-3 for n = 100, 110, 120,. . .,1000. You may want to review the



Name:
Math 433/833 Assignment # 5

Assigned: 2016.03.03
Due: 2016.03.10

Matlab intro on plotting, located at:

www.math.unl.edu/~alarios2/courses/2016_spring_M433/documents/matlabIntroLarios.pdf

It may help to turn the above test code into a function, or wrap it in a loop.
Does the plot show what you expect it to show?

Solution. Answers may vary greatly here. Roughly speaking, the number of
iterations should increase as the matrix size increases. However, maxIter can
easily be reached quickly.

4. Repeat problems 2 and 3 for the Conjugate Gradient algorithm (see page 454
in your book for the algorithm). Try to make your code as fast and efficient as
you can, while still being readable!

Print out all your codes and the two graphs (plot titles and labels for the x
and y axes are required!), and turn them in, stapled to your homework.

www.math.unl.edu/~alarios2/courses/2016_spring_M433/documents/matlabIntroLarios.pdf


Name:
Math 433/833 Assignment # 5

Assigned: 2016.03.03
Due: 2016.03.10

Solution. Answers may vary considerably. Below is one possible implementa-
tion of the conjugate gradient method. It is not optimal, but hopefully it is
somewhat easier to read that an optimized code.

1 function [x,iter] = conjugateGradient(A,b,x0 ,maxIter ,tol)

2 % Use Conjugate Gradient algorithm to solve Ax = b.

3 % Example usage:

4 % n = 1000; A = tril(rand(n)); A = A*A';
5 % x = rand(n,1); b = A*x;

6 % [x_sd ,iter] = CG(A,b,b,100 ,1e-6);

7 % display ([norm(x-x_sd)/norm(x),iter ]);

8
9 x = x0;

10 r = b - A*x; % residual

11 p = r; % search direction

12 for iter = 1: maxIter

13 r_sq = r'*r; % Precompute for speed.

14 if (sqrt(r_sq) < tol)

15 % If residual is small enough , stop.

16 break

17 end

18 Ap = A*p; % Precompute for speed.

19 alpha = r_sq/(p'*Ap);
20 x = x + alpha*p;

21 r = r - alpha*Ap;

22 beta = r'*r/r_sq; % r is now the new r, r_sq uses old r

23 p = r + beta*p;

24 end


