
Popular Explicit One-Step Methods
MATH 447/847 - Numerical Analysis

Dr. Adam Larios

Goal: We want to approximate the solution to the equation:{
y′ = f(t, y)

y(0) = y0

We look at two methods for doing this. The first has several names, in-
cluding “Modified Euler,” “Runge-Kutta-2 (RK-2),” “Heun’s Method” and
“Ralston’s Method.” To understand where it comes from, consider the Euler
methods:

yn+1 = yn + h · f(tn, yn) (Forward Euler)

yn+1 = yn + h · f(tn+1, yn+1) (Backward Euler)

Backward Euler has better stability properties, but yn+1 is only implicitly
defined, which means we have to solve an algebraic problem every time step
to find yn+1 (unless f is very nice, e.g., it is linear, so we can solve it by
hand). We would like to use Backward Euler, but the yn+1 on the right-hand
side is not known. Instead, we can approximate it using forward Euler. We
then average the results of the two methods. It looks something like this:

y∗n+1 = yn + h · f(tn, yn) (prediction with forward Euler)

y∗∗n+1 = yn + h · f(tn+1, y
∗
n+1) (use prediction in backward Euler)

yn+1 = 1
2(y∗n+1 + y∗∗n+1) (average the predictions)

The final yn+1 is what we use as our approximated value. This looks a little
messy with all the ∗’s and so on thought. We can make it a little cleaner be
first noting that

1
2(y∗n+1 + y∗∗n+1) = 1

2 [(yn + h · f(tn, yn)) + (yn + h · f(tn+1, y
∗
n+1))]

= yn + h
2 (f(tn, yn) + f(tn + h, yn + h · f(tn, yn))).

since tn+1 = tn + h. Next, note that we are being inefficient, since we
compute f(tn, yn) multiple times. Therefore, we can just save it as a value,
say, k1, and use it when we need it. We can note write the method like this:

(RK-2)


k1 = f(tn, yn)

k2 = f(tn + h, yn + h · k1)
yn+1 = yn + h

2 (k1 + k2)

This is the Modified Euler Method (or Heun, or RK-2, or Ralphson, etc.).
It is an explicit method of order 2, meaning its error behaves like M · h2
when h is small, where M is some fixed number depending on the ODE
problem, but not depending on h. For short-hand, we say it is an O(h2)
method, using the “Big-O” notation.

1



2

One can use a similar approach to get higher-order methods. Also,
instead of just approximating at t and t+ h, one can introduce approxima-
tions at other points, such as the midpoint t+ h

2 . By far the most popular

higher-order method is the Runge-Kutta-4 method, or “RK-4”. It is a 4th-
order method which is so popular, it is often called just, “The Runge-Kutta
Method”, while all other similar methods are called RK-2, RK-3, RK-5, and
so on. It is very messy to derive, but the ideas are similar to those used for
RK-2, so we will just give the method here:

(RK-4)



k1 = f(tn, yn)

k2 = f(tn + h
2 , yn + h

2 · k1)
k3 = f(tn + h

2 , yn + h
2 · k2)

k4 = f(tn + h, yn + h · k3)
yn+1 = yn + h

6 (k1 + 2k2 + 2k3 + k4)

Note that this is sometimes written in the following equivalent form:

(RK-4)



k1 = h · f(tn, yn)

k2 = h · f(tn + h
2 , yn + 1

2k1)

k3 = h · f(tn + h
2 , yn + 1

2k2)

k4 = h · f(tn + h, yn + k3)

yn+1 = yn + 1
6(k1 + 2k2 + 2k3 + k4)

A common mistake is to use the ki’s from one form, but to use the averaging
from the other form. This is a good mistake to avoid!

In general, one can have Runge-Kutta methods of any order. An order p
method can be give as

(RK-p)



k1 = f(tn, yn)

k2 = f(tn + α2h, yn + β21h · k1)
k3 = f(tn + α3h, yn + β31h · k1 + β32h · k2)

...
...

kp = f(tn + αph, yn + βp1h · k1 + βp2h · k2 + · · ·+ βp,p−1h · kp−1)
yn+1 = yn + h(c1k1 + c2k2 + · · ·+ cpkp)

For any given method the constants αi, βi, and ci are usually looked up in
a table (they are determined by working out the local truncation error with
Taylor series, and choosing the constants to make all the terms cancel up
to a desired order). They are typically given in the form of a “Butcher-
tableau”, named after the New Zealand mathematician John Butcher, who
works at the University of Auckland. For the method to be consistent (i.e.,
for the local truncation error τ → 0 as h→ 0), it is sufficient for

∑p
j=1 βi,j =

αi for each i = 2, 3, . . . , p.



3

For example, (RK-p) is given by the Butcher tableau:

0
α2 β21
α3 β31 β32
...

...
. . .

αp βp1 βp2 · · · βp,p−1
c1 c2 · · · cp−1 cp

Forward Euler (RK-1) is given by the Butcher tableau:

0
1

Modified Euler (RK-2) is given by the Butcher tableau:

0
1
2

1
2
0 1

And RK-4 is given by the Butcher tableau:

0
1
2

1
2

1
2 0 1

2
1 0 0 1

1
6

1
3

1
3

1
6

Matlab’s ODE solver ode45.m is based on Erwin Fehlberg’s method,
which is two methods combined into one, allowing for an adaptive step-size.
They have the same coefficients αi, βi, and only differ in the ci coefficients,
so we can write them in the same table as:

0
1/4 1/4
3/8 3/32 9/32

12/13 1932/2197 -7200/2197 7296/2197
1 439/216 -8 3680/513 -845/4104

1/2 -8/27 2 -3544/2565 1859/4104 -11/40
16/135 0 6656/12825 28561/56430 -9/50 2/55
25/216 0 1408/2565 2197/4104 -1/5 0

The first bottom row is used to compute a 4th-order accurate solution. The
second bottom row is used to compute a 5th-order accurate solution. If the
two methods are significantly different, the step size h is decreased, and the
calculation is repeated for that step.


