MATH 447/847
HOMEWORK 5 SOLUTIONS
SPRING 2015

Problem 1. Given a square matrix A = (a;;) let us define its Gerschgorin disks for i =

1,...,nby:

n
ij=1

n
D; = {zeC Dz —ay] < Z |aij|}

=
j#i

These are disks in the complex plane C, which are centered at the diagonal entries a;;, and whose
radius is the sum of the absolute values of the off-diagonal entries in the i row. They are very
important tools in numerical analysis. Draw a picture (on the same plane) of the Gerschgorin disks
D1, D;, D5 for the matrix
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Problem 24.2 (a). Here is Gerschgorin’s theorem, which holds for any m x m matrix A, symmetric
or nonsymmetric. Every eigenvalue of A lies in at least one of the m circular disks in the complex
plane with centers a;; and radii };; |la; j\. Moreover, if n of these disks form a connected domain
that is disjoint from the other m — n disks, then there are precisely n eigenvalues of A within this
domain. Prove the first part of Gerschgorin’s theorem. (Hint: Let A be any eigenvalue of A, and
the x corresponding eigenvector with largest entry 1.)

Proof. Let A be any eigenvalue of A, and the x corresponding eigenvector with largest entry x; = 1
in row i. This is guaranteed because for any eigenvector, we can always scale it by the reciprocal
of the largest magnitude entry.

Since x is an eigenvector, Ax = Ax. For each row k, Zak iXj = Axy. It follows Z agjx; =

J J#k
),Xk — ApjXf- Speciﬁcally, Z ajjx; = /'Lxl- — ajiXi = A— diji.
J#i
Therefore |A — ay| < Z ayjxj and satisfies the condition to be in the Gerschgorin disk. d
J#k
Problem 24.2 (c). Give estimates based on Gerschgorin’s theorem for the eigenvalues of
8 1 0
A= |1 4 g, |e|< 1.
0 € 1

Solution. Since the matrix is symmetric, all eigenvalues are real. Further, the eigenvalues fall
within the disks, therefore there are eigenvalues in the ranges 8+ 1,4+ (1+¢€),1+¢€. Since |g| < 1,
this is at worst 8 + 1,4+ (2),1 4 1.

Problem 2(b). Gershgorin’s Theorem (sometimes called Gershgorin’s Localization Theorem) says
that all the eigenvalues of a matrix must live in the Gershgorin disks. Without computing the eigen-
values of the matrix (it’s not worth your time), tell whether the matrix in Problem 1 could have an
eigenvalue greater than 6, or less than zero, based on your picture.

Solution. The matrix of problem 1 could not have an eigenvalue greater than 6 or less than zero
because none of the circles radii cover those regions.

Problem 3. Consider trying to solve the problem AX = b by an iteration method ¥**! = G¥* + b
for some G. If we write A = D — L — U, where D is a diagonal matrix made from the diagonal
entries of A, —L are the lower entries of A, and —U are the upper entries of A then the Jacobi

method is to choose G = D~!(L+U). That is, given A = (aij)} ;1. set G to be
i _din a3 _ 4T
0 aig apg ajl
41 9 93 ... _%a
B a2
G= as3 as3 0 as3
_Gnl  _9n2  _ 93
- Qpn Ann Ann 0 -

Recall that a strictly-diagonally-dominant (SDD) matrix A = (a;;) is a matrix such that

n
ij=1"

n

|aji| > Z la;j| forall j=1,...,n.
j=1
Niall
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Prove that if A is SDD, then the Jacobi method converges. [Hint: Use the Fundamental Theorem
of Iterative Methods and Gershgorin’s Theorem, which together make the proof just a couple of

lines.]
2 laij
Proof. By Gerschgorin, |A| < Y |Gjj| = J7i

JFi dii
Y laij|
Z |a,~j| < a;; and j#ia,»,- < 1.
J#i
Therefore, |A| < 1 for all eigenvalues A of G. It follows that, p(G) < 1. By the Fundamental
Theorem of Iterative Methods, the method converges. OJ

Because A is strictly diagonally dominant,

Lemma 4(a). The eigenvalues of A and I — TA are bijective.

Proof. Suppose that Ax = Ax for x # 0. Observe,
(I-tA)x=x—TAx=x—tAx = (1 —TAd)x.
Therefore, for every eigenvalue of A thers is a corresponding eigenvalue (1 —7A4) of I — 7A.
Suppose that (I — AA)x = px for x # 0. Observe
X —TAx = Ux
X — Ux = TAx
1

Ax==(1—p)x.
x=—(1-p)x

Let A = %(1 — ). Thus, for every eigenvalue i, A is a corresponding eigenvalue of A. Further,
the map is linear and so the ordering of sets is the same. U

Problem 4(a). Consider Richard’s iteration method with the scaling parameter 7 >0 (A~! ~ B =
1, 0 = B~! = 1I), so that the iteration ¥ ™! = (I — BA)¥ + Bb is just

T = (1 —1A)X* + b,

so that G = (I — tA). Recall the error equation &' = Gé. Show that
124112 < (max 1 - 2] ) 1]

where A; are the eigenvalues of A. Assume A is adjoint.

Proof. By definition, ¢t = (I — tA)é*. It follows that ||eT!|| = ||(I — TA)é*||. Recall,
[(I—tA)é|| < ||(I—tA)]|||é¥||. Since A is adjoint, ||A||, = p(A) = max;|A;|. By Lemma 4(a),
p(I —tA) = max;|1 — t4;|. It follows that ||(I — TA)|| = max; |(1 — TA;)].

In conclusion, |[&*!|| < max;|(1—14;)|||¢]]. O
Problem 4(b). Let us order the eigenvalues so that A} < A, < --- < A,,. Show that

max |1 — tA;| = max {|1 — A4 |, |1 — TA,|}
1

and that this quantity is smallest when 1 — TA; = —1 + 7A,. (Hint: Don’t use calculus to find the
min of the max, it is ugly. Instead, just draw pictures of |1 — TA;|.) Also, solve for 7 in this case.
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Proof. Given ordered eigenvalues A} <A, <--- <A, itis clear that max; |1 — tA;| = max {|1 — TA;|,|1 — TA,|}
because the expression gets small as TA; approaches 1. Our ordering guarantees that either TA; or
TA, is the furthest value from 1.
When we plot the functions |1 — TA;|, |1 — TA,| versus 7. We know that max; |1 — TA;]| is at least
the value of the greater of these functions. Thus,
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While the particular values of A1, A,, can vary, the plots maintain this general relationship because
A1 < A,. As can be seen in the graph, the minimum value of max; |1 — tA;| is where the 1 — TA; =
—1+ tA,. At this point, T = ﬁ O



