
MATH 447/847
HOMEWORK 5 SOLUTIONS

SPRING 2015

Problem 1. Given a square matrix A = (ai j)n
i, j=1, let us define its Gerschgorin disks for i =

1, . . . ,n by:

Di =

{
z ∈ C : |z−aii| ≤

n

∑
j=1
j 6=i

|ai j|

}

These are disks in the complex plane C, which are centered at the diagonal entries aii, and whose
radius is the sum of the absolute values of the off-diagonal entries in the ith row. They are very
important tools in numerical analysis. Draw a picture (on the same plane) of the Gerschgorin disks
D1, D2, D3 for the matrix

A =

2 1 1
1 2 1
1 2 3.



1
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Problem 24.2 (a). Here is Gerschgorin’s theorem, which holds for any m×m matrix A, symmetric
or nonsymmetric. Every eigenvalue of A lies in at least one of the m circular disks in the complex
plane with centers aii and radii ∑ j 6=i |ai j|. Moreover, if n of these disks form a connected domain
that is disjoint from the other m− n disks, then there are precisely n eigenvalues of A within this
domain. Prove the first part of Gerschgorin’s theorem. (Hint: Let λ be any eigenvalue of A, and
the x corresponding eigenvector with largest entry 1.)

Proof. Let λ be any eigenvalue of A, and the x corresponding eigenvector with largest entry xi = 1
in row i. This is guaranteed because for any eigenvector, we can always scale it by the reciprocal
of the largest magnitude entry.

Since x is an eigenvector, Ax = λx. For each row k, ∑
j

ak jx j = λxk. It follows ∑
j 6=k

ak jx j =

λxk−akkxk. Specifically, ∑
j 6=i

ai jx j = λxi−aiixi = λ −aii.

Therefore |λ −akk| ≤ ∑
j 6=k

ak jx j and satisfies the condition to be in the Gerschgorin disk. �

Problem 24.2 (c). Give estimates based on Gerschgorin’s theorem for the eigenvalues of

A =

8 1 0
1 4 ε

0 ε 1

, |ε|< 1.

Solution. Since the matrix is symmetric, all eigenvalues are real. Further, the eigenvalues fall
within the disks, therefore there are eigenvalues in the ranges 8±1,4±(1+ε),1±ε . Since |ε|< 1,
this is at worst 8±1,4± (2),1±1.

Problem 2(b). Gershgorin’s Theorem (sometimes called Gershgorin’s Localization Theorem) says
that all the eigenvalues of a matrix must live in the Gershgorin disks. Without computing the eigen-
values of the matrix (it’s not worth your time), tell whether the matrix in Problem 1 could have an
eigenvalue greater than 6, or less than zero, based on your picture.

Solution. The matrix of problem 1 could not have an eigenvalue greater than 6 or less than zero
because none of the circles radii cover those regions.

Problem 3. Consider trying to solve the problem A~x = b by an iteration method~xk+1 = G~xk + b
for some G. If we write A = D−L−U , where D is a diagonal matrix made from the diagonal
entries of A, −L are the lower entries of A, and −U are the upper entries of A then the Jacobi
method is to choose G = D−1(L+U). That is, given A = (ai j)n

i, j=1, set G to be

G =


0 −a12

a11
−a13

a11
· · · −a1,n

a11
−a21

a22
0 −a23

a22
· · · −a2,n

a22
−a31

a33
−a32

a33
0 · · · −a3,n

a33
...

...
... . . . ...

−an1
ann
−an2

ann
−an3

ann
· · · 0

 .

Recall that a strictly-diagonally-dominant (SDD) matrix A = (ai j)n
i, j=1, is a matrix such that

|aii|>
n

∑
j=1
j 6=i

|ai j| for all j = 1, . . . ,n.
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Prove that if A is SDD, then the Jacobi method converges. [Hint: Use the Fundamental Theorem
of Iterative Methods and Gershgorin’s Theorem, which together make the proof just a couple of
lines.]

Proof. By Gerschgorin, |λ | ≤ ∑
j 6=i
|Gi j| =

∑
j 6=i
|ai j|

aii
. Because A is strictly diagonally dominant,

∑
j 6=i
|ai j|< aii and

∣∣∣∣∣∣∣
∑
j 6=i
|ai j|

aii

∣∣∣∣∣∣∣< 1.

Therefore, |λ | < 1 for all eigenvalues λ of G. It follows that, ρ(G) < 1. By the Fundamental
Theorem of Iterative Methods, the method converges. �

Lemma 4(a). The eigenvalues of A and I− τA are bijective.

Proof. Suppose that Ax = λx for x 6=~0. Observe,

(I− τA)x = x− τAx = x− τλx = (1− τλ )x.

Therefore, for every eigenvalue of A there is a corresponding eigenvalue (1− τλ ) of I− τA.
Suppose that (I−λA)x = µx for x 6=~0. Observe

x− τAx = µx
x−µx = τAx

Ax =
1
τ
(1−µ)x.

Let λ = 1
τ
(1− µ). Thus, for every eigenvalue µ , λ is a corresponding eigenvalue of A. Further,

the map is linear and so the ordering of sets is the same. �

Problem 4(a). Consider Richard’s iteration method with the scaling parameter τ > 0 (A−1 ≈ B =
τI, Q = B−1 = 1

τ
I), so that the iteration~xk+1 = (I−BA)~xk +Bb is just

~xk+1 = (I− τA)~xk + τb,

so that G = (I− τA). Recall the error equation~ek+1 = G~ek. Show that

‖~ek+1‖2 ≤
(

max
i
|1− τλi|

)
‖~ek‖2

where λi are the eigenvalues of A. Assume A is adjoint.

Proof. By definition,~ek+1 = (I− τA)~ek. It follows that ||~ek+1||= ||(I− τA)~ek||. Recall,
||(I− τA)~ek|| ≤ ||(I− τA)||||~ek||. Since A is adjoint, ||A||2 = ρ(A) = maxi |λi|. By Lemma 4(a),
ρ(I− τA) = maxi |1− τλi|. It follows that ||(I− τA)||= maxi |(1− τλi)|.

In conclusion, ||~ek+1|| ≤maxi |(1− τλi)|||~ek||. �

Problem 4(b). Let us order the eigenvalues so that λ1 ≤ λ2 ≤ ·· · ≤ λn. Show that

max
i
|1− τλi|= max{|1− τλ1|, |1− τλn|}

and that this quantity is smallest when 1− τλ1 = −1+ τλn. (Hint: Don’t use calculus to find the
min of the max, it is ugly. Instead, just draw pictures of |1− τλi|.) Also, solve for τ in this case.
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Proof. Given ordered eigenvalues λ1≤ λ2≤ ·· ·≤ λn, it is clear that maxi |1−τλi|=max{|1− τλ1|, |1− τλn|}
because the expression gets small as τλi approaches 1. Our ordering guarantees that either τλ1 or
τλn is the furthest value from 1.

When we plot the functions |1− τλ1|, |1− τλn| versus τ . We know that maxi |1− τλi| is at least
the value of the greater of these functions. Thus,

While the particular values of λ1,λn can vary, the plots maintain this general relationship because
λ1 ≤ λn. As can be seen in the graph, the minimum value of maxi |1− τλi| is where the 1− τλ1 =
−1+ τλn. At this point, τ = 2

λ1+λn
�


