MATH 308 - SECTIONS 503/504 - PROJECT 2

INSTRUCTOR: DR. ADAM LARIOS

Due date: Monday, 5 Nov. 2012

Instructions. While there are no specific neatness requirements, your work should look professional, and
you should submit it in a form that would be appropriate for submitting to a boss at a job you care about.
Credit will be given for full, complete, and thoughtful analysis; however, a good report is not necessarily a
long report. Do not submit fluff or filler, but only quality work that you are proud of.

You are free to choose your partner, so long as it is a different partner than Project 1. Submit it with all
group member’s names clearly labeled on the front. Make sure graphs are well labeled and referenced, and
that they are easy to read. Please note that each person in a group is responsible for 100% of the work, so it
is your responsibility to keep all group members on task, or to finish the work yourself. Submit all of your
code, along with any relevant graphs, mathematical calculations, and explanations.

By turning in this project, you agree to follow the Aggie Honor Code. In particular, please be sure any
code you represent as your own is 100% written by you and your group members. You are free to discuss
with other groups, but your code should be your group’s own distinct code.

NOTICE: If a group member is not responding or falls out of contact, you need to let me know
as soon as possible. If you are stuck on something in Matlab and are spinning your wheels,
please email me early so you can get help when you need it, even if you don;t know what
question to ask. This project is not demanding, but if you wait until the last week to start it,
it is unlikely that you will do well. If you start it early, it should be very manageable.

The goals of this project are:

e To get exposure to dynamical systems, which occur frequently in applications and have many
similarities with differential equations. Dynamical systems can also display in a simple way some of
the complex behavior which only occurs in much more complicated differential equations than those
we have studied so far, so they can also provide nice analogues of difficult differential equations.

e To see a first glimpse of chaotic behavior, which underlies a very wide variety of physical processes
modeled by differential equations, such as turbulence, economic forecasting, weather forecasting, and
even some seemingly simple mechanical systems.

e To create and explore a fractal set. The word “fractal” comes from the fact that these sets have
fractional dimension. The behavior of many differential equations and dynamical systems is often
governed by an underlying fractal set (called the “attractor”). Here, we will get some idea of what
fractals look like, and how they can be generated.



Part 1: Visions of Chaos

cc “Chaos is the score upon which reality is written.”
-Henry Miller
“Chaos is a friend of mine” ,,
-Bob Dylan

Discrete Dynamical Systems

Differential equations are “continuous” systems, but there are also “discrete” systems, which are called “discrete
dynamical systems.” Consider the familiar exponential growth population model with growth rate r. If we
let P, denote the population at the n*® time step, then P, 1, the population at the (n 4 1)5* time step is
given by

Pn+1 = ’I"Pn

Warm up

Suppose r = 0.17, and the population starts at the “seed value” given by Py = 3. In Matlab, compute Pjy as
follows.

1 P = 3;

2 for n = 1:10
3 P = 0.17%P;
4 end

5 P

Of course, this will not store any of the values, so if we want to store them (so we can use them to plot,
for example), we can do this:

1 P(1) = 3;

2 for n = 1:10

3 P(n+1) = 0.17*P(n);
4 end

5 plot(P);

(If we only pass one vector P to plot, then Matlab uses just the usual counting numbers for the x-axis, [1 2
3 ... length(P)]). Notice that, since Matlab can’t start the index at 0, we have to start it at 1. Also, it
is better to preallocate P by setting P=zeros(1,10) before the loop. This makes Matlab run faster, since it
sets aside the space it needs beforehand.

To get used to if statements, try the following code.

1 a = 4;
2 b = 3;
3 if (a<b)
4 j= -1
5 elseif (a>b) & (a~=0) & (b==3)
6 jo= 2
7 else
8 i= 3
9 end
J
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Try varying a and b in the above example to get an idea of how the if statement behaves. There are many
examples of these tools online as well, if you need more examples.
Recall that we learned about the logistic equation in class in Section 2.5:

dP P

_— =1 P . ]_ _

dt K
where r is the effective growth rate, and K is the carrying capacity. We can consider a discrete version of
this equation (setting K = 1 for simplicity), namely

Popr=1-P,-(1-P,)
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This seemingly simple dynamical system exhibits chaotic behavior, in the sense that tiny changes in the
parameters can lead to very different long-term outcomes. This means that, if we want to predict the behavior,
even if our measurements of these parameters is very precise, but not perfect, the long-term behavior is
essentially unpredictable. We will explore this in the exercises below.

Exercises

(1)

To get started, choose the seed value Py = 0.5, and set r = 1.61, and repeat this process, say, 250
times to find Pa59. Remember to only output Pasg, since you don’t want a mess showing up. (There
is nothing special about the 250 here, we just need a large number.)
Next, let’s try varying r. Try the above exercise plugging in r = 2.6, r = 2.61, r = 2.611, r = 2.6111,
r=2.61111, r = 2.611111, outputting only Ps5¢ each time. Pay attention to (and record) the values
as you go. We are only slightly varying r, and the output results are not very surprising.
Try the above exercise again, but this time with = 3.6, » = 3.61, r = 3.611, » = 3.6111, r = 3.61111,
r =3.611111. What the heck just happened?
OK, that was weird. Let’s try to get a better picture of things by looping over a wide range of r
values. Calculate Pa5¢ for 1000 different r values, ranging between 3 < r < 4 (Linspace would be a
good tool to use here), and save them as you go in a big vector. Plot your r values against your Pas
values. What do you see? How are the points changing as r increases?
Try changing your seed value Py = 0.5 a little. Do you see different behavior? If not, try Py = 0.7
and Py = 0.9. What do you notice?
OK, it’s time to sort everything out. Let’s make a big loop that runs over everything, looping from
seed Py from 0.1 to 0.9 using, about 100 values or so. Put this all on the same plot by declaring
“hold on” somewhere near the top of your document. If you want to watch it draw each plot, put
pause(0.1) in your outer loop. Don’t forget to go full screen and zoom in!

Matlab automatically connects the dots between plotted points. Try plotting with points, to see
things easier, like this:

plot(r_vals,P_vals,'."');

What you just built is called “The orbit diagram for the logistic family.” It illustrates that the
long-term behavior of this system is independent of initial conditions, and highly dependent on the
parameters.

Part 2. Dreams of Order

44

“‘Chaos was the law of nature; Order was the dream of man.”
-Henry Adams

“In the space between chaos and shape there was another chance.” ,,
-Jeanette Winterson

Consider the discrete dynamical system given by

CL'O:O

2
Tpi1 =T, +C

Here, we will always have the same seed value zy = 0, but consider different values of c.

(1)
(2)

Notice that for most values of ¢, |z,| gets very large after about 20 iterations or so. Try this out for
5 different values of c.

For some values of ¢, x,, stays bounded forever, such as when ¢ = —0.5. Find the values of ¢ which
make x,, stay bounded by looking at several thousand values of ¢. There are many ways to approach
this, try to figure out a good way to do it! (Hint: Narrow your search to only values of ¢ between
-3 and 2.) You can assume that z, will become unbounded once |z,| gets larger than 2 after 20
iterations, and that x,, will stay bounded otherwise. Find the left and right endpoints of the bounded
region out to 2 decimal places.

Next, consider the case where the numbers are complex. We have the same setup:

20 = 0
Zn4+1 = zi +c
Try to find the values of ¢ which make z, stay bounded when you allow ¢ to be complex. To see if
zn 18 becoming unbounded, you need to see how large it is. You can find the “size” of a complex
number z = a + bi by computing its “modulus” or absolute-value |z| = va? + b2, which is written as
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just abs(z) in Matlab . Again, you might want to narrow your search to look near the origin. You
may need two nested loops now, one for the real part, and one for the imaginary part. Keeping track
of |z,], you can again assume that z, will become unbounded once |z,| gets larger than 2 after 20
iterations. This region is much more complicated, so you don’t need to describe it very exactly. Just
to find 5 points in the region, and 5 points outside of it (use non-real numbers for this part, since
you already did this for real numbers in the last exercise). Note: Matlab understands “i” as an
imaginary number. Make sure you DO NOT use i as a variable or an index anywhere
in your code, or you will have errors!

While there are many ways to do the above exercise, one way is to start with a big matrix A of

zeros. You can then use an if statement to check if abs(z) is larger than 2 after 20 iterations. If it is,
you can set the corresponding matrix value to 1. Otherwise, leave it as zero. You can then see what
this matrix looks like by using spy (A), which shows the non-zero values of your matrix. If you do it
this way and include the resulting plot (using at least a resolution of 100 x 100, you do not need to
report the numerical values.
Let’s get a better picture of the situation. Instead of marking which c-values are unbounded and
which one do not leave, let’s instead look at |z,|, and just color it different colors based on its size.
We can also simplify our work by putting points in the plane into a big matrix, and operating on
them all at once. To do this, use the following Matlab code:

"
|

1 = linspace(x_center - x_length,x_center + x_length,resolution);
2 y = linspace(y_center - y_length,y_center + y_length,resolution);
3 [X,Y]=meshgrid(x,y);
4 c = X + ixY;
5 z = zeros(size(c));

You have to put it numbers for the y_length, x_center, resolution, and so on. This will store all
of your grid-points in the big matrix c. Now, run the iteration about 20 times, making sure to square
things component-wise, like this: c.A2, instead of like this: cA2 (cA2 means matrix multiplication,
which we don’t want here). (Hint: The iteration is very simple, and will likely only take you three
lines of coding.)

To plot this, we’ll use the pcolor function. The values of z are too far apart for things to look
nice, so we’ll compress them using a decaying exponential function.

w = exp(-abs(z)); % This is just to make the colors look nice.
pcolor (w); % This plots the colors.
shading flat;

W N =

axis ('square','equal','off');

Make sure your resolution is high! You want at least 100 x 100 resolution, but Matlab can easily
handle 1000 x 1000, which looks much nicer.

Notice the extreme amount of complexity created from such a simple iteration. To see more of
this complexity, change the values of x_center, x_length, y_center, and y_length to “zoom in”
on particular parts of the picture. Note that this is not the same thing as clicking on the “zoom
in” button, since you are recalculating the values. Find an interesting region of the picture, and
include it in your project (this portion will only be graded based on whether or not you zoomed in
on something, there is no need to worry about not finding something interesting enough).

(6) Fun stuff (do one or more of these):

(a) Try putting colormap autumn(256) ; before pcolor. You can google “matlab colormap” to find
many neat-looking colors.

(b) Try putting pause(0.2) into your loop just before or after the pcolor command to watch as
Matlab calculates each iteration. .

(¢) What happens if you change the function in the iteration? What new shapes can you create?



