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A brief intro to gerrymandering

U.S. Census taken every 10 years (with the next coming in 2020)

The 435 U.S. Reps are then (re)apportioned

States required to redistrict after each Census

. . .

Lawsuits ensue
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How to gerrymander: cracking and packing
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The VRA and racial gerrymandering

Passed in 1965, the Voting Rights Act prohibits districting practices which
”dilute” a racial minority group’s voting power

Thornburg v. Gingles (1986) established criteria for creating
”majority-minority” districts

1 Minority group must be ”sufficiently numerous and compact” to make up a
district

2 Group members must vote similarly
3 Majority group must vote as a bloc, generally in opposition to the minority

group
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Greatest Hits...
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North Carolina 12
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Illinois 4
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Wisconsin State Assembly, 2012

R’s get 48% of the votes, 60/99 seats in 2012 under the above plan
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Pennsylvania U.S. House, 2016

R’s get 54% of the vote, 13/18 seats in 2016
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North Carolina U.S. House, 2016

R’s get 53% of the vote, 10/13 seats in 2016
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The Takeaway

Poorly shaped districts often indicate a gerrymander, but effective
gerrymanders certainly take place without them

In the absence of shape infractions, how can we determine with confidence
that a given plan is a gerrymander?

I Bad numbers aren’t enough; must consider viable alternatives
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The “dual graph”

States are carved up into atomic units (often, Voting Tabulation Districts, or
VTDs), which are agglomerated into congressional districts
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The “dual graph”

Treat VTDs as faces of a planar graph, and take the dual
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Benefits of the dual graph

Easy to work with in Python, etc.

Allows for measures of discrete compactness

Districting plans are (connected) partitions of the dual graph
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For example...
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Exploring the set of districtings
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Markov chains

Definition
A discrete time Markov chain M on state space Σ is a sequence of random
variables X0,X1,X2, . . . taking values in Σ such that

P(Xt = σ|X0 = σ0,X1 = σ1, . . . ,Xt−1 = σ′) = P(Xt = σ|Xt−1 = σ′).

This is the transition probability from σ′ to σ, which we denote by P(σ′, σ)

In our chain, the state space Σ will be the set of (reasonable) districting partitions
of the state dual graph, and we transition between states by flipping border
vertices
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Finding outliers

At each step, compute some relevant measure of ”gerrymandering”

We define two measures of interest

Definition

Let σ be a districting of a state with d districts, and let δi ∈ [0, 1] be the
proportion of votes party A receives in district i ∈ [d ]. The variance score of σ is

fvar(σ) := −

∑d
i=1 δ

2
i

d
−

(∑d
i=1 δi
d

)2


The mean-median score of σ is

fmm(σ) = median{δi}di=1 −mean{δi}di=1.
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Finding outliers

Walk along districting plans, computing fvar or fmm at each step. Determine if any
are suspiciously bad...

But what if our walk is very slow? How to determine significance?

Austin Eide Sampling and Graph Problems in Political Redistricting... ...or, what I did last summerSeptember 18, 2018 24 / 50



Finding outliers

Walk along districting plans, computing fvar or fmm at each step. Determine if any
are suspiciously bad...

But what if our walk is very slow? How to determine significance?

Austin Eide Sampling and Graph Problems in Political Redistricting... ...or, what I did last summerSeptember 18, 2018 24 / 50



The
√

2ε test

Theorem (Chikina, Frieze, Pegden ’17)

Let M = X0,X1, . . . be a reversible Markov chain on state space Σ with
stationary distribution π, and let f : Σ→ R. If X0 ∼ π, then for any fixed k the
probability that f (X0) is in the lowest ε percentile of {f (Xi )}ki=0 is at most

√
2ε.
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Stationary distributions and reversibility

Definition
A probability distribution π on Σ is stationary for a Markov chain M if X0 ∼ π
implies Xi ∼ π for all i ≥ 1.

Definition
A Markov chain M is reversible if

P(X0 = σ0,X1 = σ1, . . . ,Xk = σk) = P(X0 = σk ,X1 = σk−1, . . . ,Xk = σ0)

for all k.
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Theorem, rephrased

Make π uniform on our state space, so that sampling from π is akin to sampling a
“typical” districting plan.

Theorem (Rephrased)

If the random walk on districting plans is reversible, then under the null hypothesis
that it starts at a “typical” plan, the probability of the starting plan being an
extreme outlier among the resulting sample is small.
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League of Women Voters of PA v. Commonwealth of PA

Lawsuit filed in 2017 to challenge 2011 congressional districts in Pennsylvania

In Jan, 2018, court orders Republican state legislature and Democratic
governor to compromise

After this order, maps from 8 different groups (including PA House Dems, PA
House Repubs, and the governor) are submitted to the court

I Amazingly, partisan concerns were not considered in the creation of any of
these maps!

F (...not really.)
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Duchin’s PA Analysis

In February, PA Governor Tom Wolf (D) hires Moon Duchin to do an analysis
of the submitted maps
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Some convincing figures...
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Try it at home!
RunDMCMC:
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Issues

(Figure taken from “Assessing Significance in a Markov Chain without mixing” by
Chikina, Frieze, and Pegden.)
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A graph partition sampling problem

Want to better understand the random walk on graph partitions.

I Walk shown before is quite slow.

An “easy” way to get a connected partition of a graph G into k parts: take a
spanning tree T of G and cut k − 1 edges:
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Example: the 4× 4 grid, aka Wyoming
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A random walk on spanning trees, and a “shadow walk” on
partitions

Algorithm (Spanning Tree Walk).

Let Ti be a spanning tree of G

1 Pick e ∈ E (Ti ) and e′ ∈ E (G ) u.a.r.

2 If Ti − e + e′ is a tree, set Ti+1 = Ti − e + e′

3 Else, Ti+1 = Ti

The above describes a Markov chain on the set of spanning trees of G .

Choose k − 1 edges to cut from each Ti .
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A random walk on spanning trees, and a “shadow walk” on
partitions
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Partition Spectra

Call the set of partitions of V (G ) obtainable by cutting k − 1 edges from a
spanning tree T the k-partition spectrum of T .

Question: can we bound the overlap of the k-partition spectra of spanning trees
T and T ′ in terms of d(T ,T ′)?
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Some evidence:
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#SpanningTrees as a measure of compactness

The sampling method described above is far from uniform partition. In fact, we
can compute the bias relatively easily.

For instance, if we cut one edge from a
uniform tree T , then:

P(drawing partition P = (A,B)) =
τ(G [A])τ(G [B]))Cut(A,B)

τ(G )(n − 1)

where τ(H) = the number of spanning trees of a graph H.
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#SpanningTrees as a measure of compactness
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#SpanningTrees as a measure of compactness
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Maximizing #SpanningTrees

Question: which n-vertex connected (induced) subgraph of the infinite grid has
the most spanning trees?
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Kirchoff’s (Matrix-Tree) Theorem

Theorem (Kirchoff’s Theorem)

Let G be a connected graph on n vertices, L be the Laplacian of G, and L̂j be L
with the jth row and column removed. Then

τ(G ) = det(L̂j)

for any j ∈ [n].
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A result of Fan Chung

Theorem (F. Chung, 1999)

Let H be a connected induced subgraph of the infinite grid. Then

cec1|H|−c2|∂H| ≤ τ(H) ≤ c ′ec1|H|+c3
|H|
|∂H|

where c , c ′ are constants which depend only on the infinite grid, and c1, c2, c3 are
constants which depend on |H|.

But, the bounds are not particularly tight.
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An optimization approach

Theorem (Dissanayake, Huang, Sukhatme, Khosoussi ’18)

Let V = V (Kn), E = E (Kn)) and Einit ⊆ E such that G = (V ,Einit) is connected.
The function log TG : P(E )→ R given by

log TG(S) = log det[L̂(S ∪ Einit)]− log det[L̂(Einit)]

is monotone and submodular.
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