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Markov chains

Definition (Markov Chain)

A Markov chain on state space X is a sequence of X -valued
r.v.’s (X0, X1, . . . ) satisfying the Markov property :

P(Xt+1 = y|(Xt, . . . , X0)) = P(Xt+1 = y|Xt = x) =: P (x, y)

A chain is thus entirely described by an initial distribution
µ0 ∈ R|X | for X0 and a |X | × |X | row-stochastic matrix P
which stores transition probabilities.
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The transition matrix

If today’s distribution (i.e., the distribution on Xt) is µt, then
tomorrow’s distribution is µt+1 = µtP.

Given the initial distribution µ0, inductively we have µt = µ0P
t.

Note: almost always, we’ll think of µ0 as a point mass on
some state x ∈ X .
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Irreducibility & Aperiodicity

For x, y ∈ X and t ≥ 0, P t(x, y) is the probability of traveling
from x to y in t steps.

Definition (I. & A.)

A chain is irreducible if ∀ pairs x, y ∈ X , ∃ integer t with
P t(x, y) > 0.

A chain is aperiodic if

gcd{t ≥ 1 : P t(x, x) > 0} = 1.

(For example, a “bipartite” chain is periodic, since then the
above quantity is 2.)
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Perron-Frobenius

Theorem

If P is irreducible and aperiodic, then ∃! distribution π such
that πP = π, and moreover for any µ0 we have µ0P

t → π.

Proof.

I + A =⇒ P t > 0 for all t sufficiently large.

Easy to show that σ(P ) ≤ 1, and that 1 is an eigenvalue.

Thus, by Perron-Frobenius (and a corollary thereof):

P has a unique, strictly positive left eigenvector π with
eigenvalue 1—the stationary distribution of P

For any distribution µ0 on X , µ0P
t → π
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Convergence in...?

Usually,

Definition (Total Variation Distance)

For probability distributions µ, ν ∈ R|X | on X , define

‖µ− ν‖TV =
1

2

∑
x∈X
|µ(x)− ν(x)| = 1

2
‖µ− ν‖1 .

Equivalent to ‖µ− ν‖TV = maxA⊆Ω |µ(A)− ν(A)|.
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Mixing times

For x ∈ X , let µx ∈ R|X | be the point-mass distribution at x.

Define d(t) := maxx
∥∥µxP t − π∥∥TV .

For ε > 0, define tmix(ε) = min{t ∈ Z≥0 : d(t) < ε}.

tmix(ε) is the (ε)-mixing time of the chain.
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Reversibility & r.w.’s on graphs

Henceforth, we’ll restrict attention to chains which are random
walks on edge-weighted graphs

Proceed by P (x, yi) = wi∑
wi
. What do we get when all edges

have weight 1?
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Reversibility & r.w.’s on graphs

Reversibility is the core property relating general chains to
r.w.’s on graphs.

Definition (Reversibility)

A Markov chain is reversible with respect to stationary
distribution π if ∀x, y ∈ X ,

π(x)P (x, y) = π(y)P (y, x).

{reversible chains P} ⇐⇒ {weighted graphs}

P 7→ GP where V (GP ) = X ,
edge weights π(x)P (x, y) = π(y)P (y, x)
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Reversibility aka “Detailed Balance”
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The π-inner product

If P is irreducible and reversible w.r.t. π, then
〈·, ·〉π : R|X | → R by

〈f, g〉π =
∑
x∈X

f(x)g(x)π(x)

is an inner product on R|X |, which is a Hilbert space with
respect to 〈·, ·〉π.

So...
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The spectral representation of the chain

Lemma

Let P be aperiodic, irreducible, and reversible with respect to
π. Then:

1 P is a self-adjoint operator on (R|X |, 〈·, ·〉π).

2 1 has multiplicity 1 as an eigenvalue of P , and the
corresponding (right) eigenspace is spanned by the all 1’s
vector 1.

3 −1 is not an eigenvalue of P.

Let λ∗ = max{|λ| : λ ∈ spec(P ), λ 6= 1}. By the above and
fact σ(P ) = 1, have 0 ≤ λ∗ < 1.
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Bounding mixing time with λ∗

Recall
d(t) = max

x∈X

∥∥µxP t − π∥∥TV .

λ∗ controls the asymptotic (in t) rate of convergence of d(t) to
0, i.e., for some c and C which depend on P we have

cλt∗ ≤ d(t) ≤ Cλt∗.
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Bounding mixing time below with λ∗

A statistical perspective: think of vector f ∈ R|X | as a function
(“statistic”) on X .

Distinguish the distributions µxP
t and π using the statistic f .
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Bounding mixing time below with λ∗

Theorem (Spectral Lower Bound)

For P as before, ε > 0:

tmix(ε) ≥
(

1

1− λ∗
− 1

)
log

1

2ε
.

Proof.

For any f ∈ R|X | and x ∈ X ,

|EµxP t(f)− Eπ(f)| =

∣∣∣∣∣∣
∑
y∈X

(µxP
t(y)− π(y))f(y)

∣∣∣∣∣∣
≤ ‖f‖∞ 2d(t)

where Eν(·) is expected value taken against distribution ν.
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≤ ‖f‖∞ 2d(t)

where Eν(·) is expected value taken against distribution ν.
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Bounding mixing time below with λ∗

Proof.

We have |EµxP t(f)− Eπ(f)| ≤ ‖f‖∞ 2d(t). So any lower
bound on the LHS gives a lower bound on d(t).

If f is an eigenvector of P with eigenvalue λ 6= 1, we know two
things:

1 Eπ(f) = πf = πPf = λπf = λEπ(f) =⇒ Eπ(f) = 0.

2 EµxP t(f) = µxP
tf = µxλ

tf = λtf(x).

So |λtf(x)| ≤ ‖f‖∞ 2d(t) for any x and eigenvalue λ 6= 1.
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Bounding mixing time below with λ∗

Proof.

Optimizing over x and λ gives λt∗
2 ≤ d(t).

Setting the LHS to be at least ε and solving for t yields

tmix(ε) ≥
(

1

1− λ∗
− 1

)
log

1

2ε
.

This can be understood as a “first moment” bound, i.e.,
relying only on expectations. If variances are computable,
better bounds sometimes exist.
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Bounding mixing time above with λ∗

Theorem (Spectral Upper Bound)

P as before, ε > 0:

tmix(ε) ≤
1

1− λ∗
log

1

επmin

Proof.

A bit more technical, uses the diagonalization of P .
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Remarks

(
1

1− λ∗
− 1

)
log

1

2ε
≤ tmix(ε) ≤

1

1− λ∗
log

1

επmin

For a fixed chain, these bounds are quite tight...

But common to have |X | = n and n→∞. Here, you pay
a price for the log 1

πmin
.

In many chains like this, a cutoff phenomenon is observed:
as n→∞, d(t) approaches a step function which jumps
from 1 (completely unmixed) to 0 (completely mixed) at a
critical threshold t∗ = t∗(n).
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The Cycle

Random walk on the (odd) n-cycle has eigenvalues

{cos 2πj
n }

n−1
2

j=0 .

So λ∗ = cos 2π
n = 1− 2π2

n2 +O(n−4).

Since stationary is uniform, our bounds give

π2n2

2
log

1

2ε
. tmix(ε) .

π2n2

2
log

n

ε
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Card Shuffling

Think of Sn as set of orderings of an n-card deck, laid
side-by-side on a table.

Consider the Markov chain on Sn obtained by iterating the
following rule: pick a random pair of cards and transpose them.

Theorem (Diaconis & Shashashani ’81)

For this chain, for any ε > 0

tmix(ε) ∼
1

2
n log n

(independent of ε).

21 / 25
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A combinatorial optimization problem

Let P be reversible with respect to π.

Challenge: pick a function f ∈ {±1}|X | minimizing E(f)

‖f‖22
, where

E(f) :=
1

2

∑
x,y∈X

[f(x)− f(y)]2π(x)P (x, y) = 〈(I − P )f, f〉π

s.t. f · 1 = 0.

If we identify P with it’s edge weighted graph GP , this is
equivalent to finding a balanced labeling of the vertices of GP
with ±1 minimizing the above.

22 / 25



Spectral
Theory of

Finite Markov
Chains

Austin Eide

Preliminaries

Spectral Rep.
Chains

Examples

Intuition: the
Dirichlet
Energy

References

A combinatorial optimization problem

Let P be reversible with respect to π.

Challenge: pick a function f ∈ {±1}|X | minimizing E(f)

‖f‖22
, where

E(f) :=
1

2

∑
x,y∈X

[f(x)− f(y)]2π(x)P (x, y) = 〈(I − P )f, f〉π

s.t. f · 1 = 0.

If we identify P with it’s edge weighted graph GP , this is
equivalent to finding a balanced labeling of the vertices of GP
with ±1 minimizing the above.

22 / 25



Spectral
Theory of

Finite Markov
Chains

Austin Eide

Preliminaries

Spectral Rep.
Chains

Examples

Intuition: the
Dirichlet
Energy

References

A combinatorial optimization problem

Let P be reversible with respect to π.

Challenge: pick a function f ∈ {±1}|X | minimizing E(f)

‖f‖22
, where

E(f) :=
1

2

∑
x,y∈X

[f(x)− f(y)]2π(x)P (x, y)

= 〈(I − P )f, f〉π

s.t. f · 1 = 0.

If we identify P with it’s edge weighted graph GP , this is
equivalent to finding a balanced labeling of the vertices of GP
with ±1 minimizing the above.

22 / 25



Spectral
Theory of

Finite Markov
Chains

Austin Eide

Preliminaries

Spectral Rep.
Chains

Examples

Intuition: the
Dirichlet
Energy

References

A combinatorial optimization problem

Let P be reversible with respect to π.

Challenge: pick a function f ∈ {±1}|X | minimizing E(f)

‖f‖22
, where

E(f) :=
1

2

∑
x,y∈X

[f(x)− f(y)]2π(x)P (x, y) = 〈(I − P )f, f〉π

s.t. f · 1 = 0.

If we identify P with it’s edge weighted graph GP , this is
equivalent to finding a balanced labeling of the vertices of GP
with ±1 minimizing the above.

22 / 25



Spectral
Theory of

Finite Markov
Chains

Austin Eide

Preliminaries

Spectral Rep.
Chains

Examples

Intuition: the
Dirichlet
Energy

References

A combinatorial optimization problem

Let P be reversible with respect to π.

Challenge: pick a function f ∈ {±1}|X | minimizing E(f)

‖f‖22
, where

E(f) :=
1

2

∑
x,y∈X

[f(x)− f(y)]2π(x)P (x, y) = 〈(I − P )f, f〉π

s.t. f · 1 = 0.

If we identify P with it’s edge weighted graph GP , this is
equivalent to finding a balanced labeling of the vertices of GP
with ±1 minimizing the above.

22 / 25



Spectral
Theory of

Finite Markov
Chains

Austin Eide

Preliminaries

Spectral Rep.
Chains

Examples

Intuition: the
Dirichlet
Energy

References

A combinatorial optimization problem

Let P be reversible with respect to π.

Challenge: pick a function f ∈ {±1}|X | minimizing E(f)

‖f‖22
, where

E(f) :=
1

2

∑
x,y∈X

[f(x)− f(y)]2π(x)P (x, y) = 〈(I − P )f, f〉π

s.t. f · 1 = 0.

If we identify P with it’s edge weighted graph GP , this is
equivalent to finding a balanced labeling of the vertices of GP
with ±1 minimizing the above.
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The Dirichlet Energy

Minimizing E(f) is analogous to the problem of minimizing

∫
Ω
‖∇u‖2 dx

over u : Ω ⊆ Rn → R s.t. some boundary conditions.

To solve the continuous version, one solves Laplace’s Equation
∆u = 0.
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The (Discrete) Dirichlet Energy

We can relax our combinatorial problem to minimizing E(f)

‖f‖22
over any f ∈ R|X | s.t. 〈f,1〉π = 0 (and f 6= 0).

Theorem

Let P have eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λ|X | with eigenvectors
f1, f2, . . . , f|X |. The above optimization problem is solved by
taking f = 1− f2, and thus has minimum value γ = 1− λ2.
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