Spectral Theory of Finite Markov Chains Austin Eide Preliminaries Spectral Rep. Chains Examples Intuition: the Dirichlet Energy References # Spectral Theory of Finite Markov Chains Austin Fide University Of Nebraska - Lincoln Spring 2020 ### Markov chains Spectral Theory of Finite Markov Chains Austin Eide Preliminaries Spectral Rep. Chains _ . Examples Intuition: the Dirichlet Energy References ## Definition (Markov Chain) A Markov chain on state space $\mathcal X$ is a sequence of $\mathcal X$ -valued r.v.'s (X_0,X_1,\dots) satisfying the *Markov property*: $$\mathbf{P}(X_{t+1} = y | (X_t, \dots, X_0)) = \mathbf{P}(X_{t+1} = y | X_t = x) =: P(x, y)$$ ### Markov chains Spectral Theory of Finite Markov Chains Austin Eide **Preliminaries** Spectral Rep. Chains Examples Intuition: the Dirichlet Energy References ## Definition (Markov Chain) A Markov chain on state space \mathcal{X} is a sequence of \mathcal{X} -valued r.v.'s (X_0, X_1, \dots) satisfying the Markov property: $$\mathbf{P}(X_{t+1} = y | (X_t, \dots, X_0)) = \mathbf{P}(X_{t+1} = y | X_t = x) =: P(x, y)$$ A chain is thus entirely described by an initial distribution $\mu_0 \in \mathbb{R}^{|\mathcal{X}|}$ for X_0 and a $|\mathcal{X}| \times |\mathcal{X}|$ row-stochastic matrix Pwhich stores transition probabilities. Spectral Theory of Finite Markov Chains Austin Eide #### Preliminaries Spectral Rep. Chains Examples Intuition: the Dirichlet Energy References Spectral Theory of Finite Markov Chains Austin Eide Preliminaries Spectral Rep. Chains Examples Intuition: the Dirichlet Energy References If today's distribution (i.e., the distribution on X_t) is μ_t , then tomorrow's distribution is $\mu_{t+1} = \mu_t P$. Spectral Theory of Finite Markov Chains Austin Eide Preliminaries Spectral Rep. Chains Examples xampies Intuition: the Dirichlet Energy References If today's distribution (i.e., the distribution on X_t) is μ_t , then tomorrow's distribution is $\mu_{t+1} = \mu_t P$. Given the initial distribution μ_0 , inductively we have $\mu_t = \mu_0 P^t$. Spectral Theory of Finite Markov Chains Austin Eide Preliminaries Spectral Rep. Chains Examples Intuition: the Dirichlet Energy References If today's distribution (i.e., the distribution on X_t) is μ_t , then tomorrow's distribution is $\mu_{t+1} = \mu_t P$. Given the initial distribution μ_0 , inductively we have $\mu_t = \mu_0 P^t$. **Note**: almost always, we'll think of μ_0 as a point mass on some state $x \in \mathcal{X}$. Spectral Theory of Finite Markov Chains Austin Eide #### Preliminaries Spectral Rep. Chains Examples Intuition: the Dirichlet Energy References Spectral Theory of Finite Markov Chains Austin Eide #### Preliminaries Spectral Rep. Chains Examples Intuition: the Dirichlet Energy References For $x,y\in\mathcal{X}$ and $t\geq0$, $P^t(x,y)$ is the probability of traveling from x to y in t steps. Spectral Theory of Finite Markov Chains Austin Eide #### Preliminaries Spectral Rep. Chains Examples Intuition: the Dirichlet Energy References For $x,y\in\mathcal{X}$ and $t\geq0$, $P^t(x,y)$ is the probability of traveling from x to y in t steps. ### Definition (I. & A.) A chain is *irreducible* if \forall pairs $x,y\in\mathcal{X}$, \exists integer t with $P^t(x,y)>0$. Spectral Theory of Finite Markov Chains Austin Eide #### Preliminaries Spectral Rep. Chains Examples _____ Intuition: the Dirichlet Energy References For $x,y\in\mathcal{X}$ and $t\geq0$, $P^t(x,y)$ is the probability of traveling from x to y in t steps. ## Definition (I. & A.) A chain is *irreducible* if \forall pairs $x,y\in\mathcal{X}$, \exists integer t with $P^t(x,y)>0.$ A chain is aperiodic if $$\gcd\{t \ge 1 : P^t(x, x) > 0\} = 1.$$ Spectral Theory of Finite Markov Chains Austin Eide #### Preliminaries Spectral Rep. Chains Examples _____ Intuition: the Dirichlet Energy References For $x,y\in\mathcal{X}$ and $t\geq0$, $P^t(x,y)$ is the probability of traveling from x to y in t steps. ### Definition (I. & A.) A chain is *irreducible* if \forall pairs $x,y\in\mathcal{X}$, \exists integer t with $P^t(x,y)>0.$ A chain is aperiodic if $$\gcd\{t \ge 1 : P^t(x, x) > 0\} = 1.$$ (For example, a "bipartite" chain *is* periodic, since then the above quantity is 2.) Spectral Theory of Finite Markov Chains Austin Eide #### Preliminaries Spectral Rep. Chains Examples Intuition: the Dirichlet Energy References #### <u>Theorem</u> If P is irreducible and aperiodic, then $\exists !$ distribution π such that $\pi P = \pi$, and moreover for any μ_0 we have $\mu_0 P^t \to \pi$. Spectral Theory of Finite Markov Chains Austin Eide Preliminaries Spectral Rep. Chains Examples Intuition: the Dirichlet Energy References #### Theorem If P is irreducible and aperiodic, then $\exists !$ distribution π such that $\pi P = \pi$, and moreover for any μ_0 we have $\mu_0 P^t \to \pi$. ### Proof. $I + A \implies P^t > 0$ for all t sufficiently large. Spectral Theory of Finite Markov Chains Austin Eide Preliminaries Spectral Rep. Chains Examples Intuition: the Dirichlet Energy References #### Theorem If P is irreducible and aperiodic, then $\exists !$ distribution π such that $\pi P = \pi$, and moreover for any μ_0 we have $\mu_0 P^t \to \pi$. #### Proof. $I + A \implies P^t > 0$ for all t sufficiently large. Easy to show that $\sigma(P) \leq 1$, and that 1 is an eigenvalue. Spectral Theory of Finite Markov Chains Austin Eide Preliminaries Spectral Rep. Chains Examples Intuition: the Dirichlet Energy References #### Theorem If P is irreducible and aperiodic, then $\exists !$ distribution π such that $\pi P = \pi$, and moreover for any μ_0 we have $\mu_0 P^t \to \pi$. #### Proof. $I + A \implies P^t > 0$ for all t sufficiently large. Easy to show that $\sigma(P) \leq 1$, and that 1 is an eigenvalue. Thus, by Perron-Frobenius (and a corollary thereof): Spectral Theory of Finite Markov Chains Austin Eide Preliminaries Spectral Rep. Chains Examples Intuition: the Dirichlet Energy References #### Theorem If P is irreducible and aperiodic, then $\exists !$ distribution π such that $\pi P = \pi$, and moreover for any μ_0 we have $\mu_0 P^t \to \pi$. #### Proof. $I + A \implies P^t > 0$ for all t sufficiently large. Easy to show that $\sigma(P) \leq 1$, and that 1 is an eigenvalue. Thus, by Perron-Frobenius (and a corollary thereof): ullet P has a unique, strictly positive left eigenvector π with eigenvalue 1—the stationary distribution of P Spectral Theory of Finite Markov Chains Austin Eide **Preliminaries** Spectral Rep. Chains Examples Intuition: the Dirichlet Energy References #### Theorem If P is irreducible and aperiodic, then $\exists !$ distribution π such that $\pi P = \pi$, and moreover for any μ_0 we have $\mu_0 P^t \to \pi$. #### Proof. $I + A \implies P^t > 0$ for all t sufficiently large. Easy to show that $\sigma(P) \leq 1$, and that 1 is an eigenvalue. Thus, by Perron-Frobenius (and a corollary thereof): - P has a unique, strictly positive left eigenvector π with eigenvalue 1—the stationary distribution of P - For any distribution μ_0 on \mathcal{X} , $\mu_0 P^t \to \pi$ # Convergence in...? Spectral Theory of Finite Markov Chains Austin Eide Preliminaries Spectral Rep. Chains ${\sf Examples}$ Intuition: the Dirichlet Energy References Usually, # Convergence in...? Spectral Theory of Finite Markov Chains Austin Eide Preliminaries Spectral Rep. Chains Examples Intuition: the Dirichlet Energy References Usually, ## Definition (Total Variation Distance) For probability distributions $\mu, \nu \in \mathbb{R}^{|\mathcal{X}|}$ on \mathcal{X} , define $$\|\mu - \nu\|_{TV} = \frac{1}{2} \sum_{x \in \mathcal{X}} |\mu(x) - \nu(x)| = \frac{1}{2} \|\mu - \nu\|_{1}.$$ # Convergence in...? Spectral Theory of Finite Markov Chains Austin Eide Preliminaries Spectral Rep. Chains Examples Intuition: the Dirichlet Energy References Usually, ## Definition (Total Variation Distance) For probability distributions $\mu, \nu \in \mathbb{R}^{|\mathcal{X}|}$ on \mathcal{X} , define $$\|\mu - \nu\|_{TV} = \frac{1}{2} \sum_{x \in \mathcal{X}} |\mu(x) - \nu(x)| = \frac{1}{2} \|\mu - \nu\|_1.$$ Equivalent to $\|\mu - \nu\|_{TV} = \max_{A \subset \Omega} |\mu(A) - \nu(A)|$. # Mixing times Spectral Theory of Finite Markov Chains Austin Eide Preliminaries Spectral Rep. Chains Examples Intuition: the Dirichlet Energy References For $x \in \mathcal{X}$, let $\mu_x \in \mathbb{R}^{|\mathcal{X}|}$ be the point-mass distribution at x. References For $x \in \mathcal{X}$, let $\mu_x \in \mathbb{R}^{|\mathcal{X}|}$ be the point-mass distribution at x. Define $$d(t) := \max_{x} \left\| \mu_x P^t - \pi \right\|_{TV}$$. References For $x \in \mathcal{X}$, let $\mu_x \in \mathbb{R}^{|\mathcal{X}|}$ be the point-mass distribution at x. Define $$d(t) := \max_{x} \left\| \mu_x P^t - \pi \right\|_{TV}$$. For $$\varepsilon>0$$, define $t_{\mathrm{mix}}(\varepsilon)=\min\{t\in\mathbb{Z}_{\geq0}:d(t)<\varepsilon\}.$ References For $x \in \mathcal{X}$, let $\mu_x \in \mathbb{R}^{|\mathcal{X}|}$ be the point-mass distribution at x. Define $$d(t) := \max_{x} \left\| \mu_x P^t - \pi \right\|_{TV}$$. For $$\varepsilon>0$$, define $t_{\mathrm{mix}}(\varepsilon)=\min\{t\in\mathbb{Z}_{\geq0}:d(t)<\varepsilon\}.$ $t_{\mathrm{mix}}(\varepsilon)$ is the (ε) -mixing time of the chain. Spectral Theory of Finite Markov Chains Austin Eide Preliminaries Spectral Rep. Chains Examples Intuition: the Dirichlet Energy References Henceforth, we'll restrict attention to chains which are *random* walks on edge-weighted graphs Spectral Theory of Finite Markov Chains Austin Eide #### Preliminaries Spectral Rep. Chains Examples Intuition: the Dirichlet Energy References Henceforth, we'll restrict attention to chains which are *random* walks on edge-weighted graphs Spectral Theory of Finite Markov Chains Austin Eide #### Preliminaries Spectral Rep. Chains Examples Intuition: the Dirichlet Energy References Henceforth, we'll restrict attention to chains which are random walks on edge-weighted graphs Proceed by $P(x, y_i) = \frac{w_i}{\sum w_i}$. Spectral Theory of Finite Markov Chains Austin Eide #### Preliminaries Spectral Rep. Chains Examples Intuition: the Dirichlet Energy References Henceforth, we'll restrict attention to chains which are *random* walks on edge-weighted graphs Proceed by $P(x,y_i)=\frac{w_i}{\sum w_i}.$ What do we get when all edges have weight 1? Spectral Theory of Finite Markov Chains Austin Eide #### Preliminaries Spectral Rep. Chains Examples Intuition: the Dirichlet Energy References Reversibility is the core property relating general chains to r.w.'s on graphs. Spectral Theory of Finite Markov Chains Austin Eide Preliminaries Spectral Rep. Chains Examples Intuition: the Dirichlet Energy References Reversibility is the core property relating general chains to r.w.'s on graphs. ## Definition (Reversibility) A Markov chain is *reversible* with respect to stationary distribution π if $\forall x,y\in\mathcal{X}$, $$\pi(x)P(x,y) = \pi(y)P(y,x).$$ Spectral Theory of Finite Markov Chains Austin Eide Preliminaries Spectral Rep. Chains Examples Intuition: the Dirichlet Energy References Reversibility is the core property relating general chains to r.w.'s on graphs. ## Definition (Reversibility) A Markov chain is *reversible* with respect to stationary distribution π if $\forall x,y\in\mathcal{X}$, $$\pi(x)P(x,y) = \pi(y)P(y,x).$$ $\{\text{reversible chains } P\} \iff \{\text{weighted graphs}\}$ $$P\mapsto G_P$$ where $V(G_P)=\mathcal{X}$, edge weights $\pi(x)P(x,y)=\pi(y)P(y,x)$ ## Reversibility aka "Detailed Balance" Spectral Theory of Finite Markov Chains Austin Eide #### Preliminaries Spectral Rep. Chains Examples Intuition: the Dirichlet Energy References ## The π -inner product Spectral Theory of Finite Markov Chains Austin Eide Preliminaries Spectral Rep. Chains Examples Intuition: the Dirichlet Energy References If P is irreducible and reversible w.r.t. π , then $\langle\cdot,\cdot\rangle_\pi:\mathbb{R}^{|\mathcal{X}|}\to\mathbb{R}$ by $$\langle f, g \rangle_{\pi} = \sum_{x \in \mathcal{X}} f(x)g(x)\pi(x)$$ is an inner product on $\mathbb{R}^{|\mathcal{X}|}$, which is a Hilbert space with respect to $\langle\cdot,\cdot\rangle_{\pi}$. Austin Eide Preliminaries Spectral Rep. Chains Examples Intuition: the Dirichlet Energy References If P is irreducible and reversible w.r.t. π , then $\langle\cdot,\cdot\rangle_\pi:\mathbb{R}^{|\mathcal{X}|}\to\mathbb{R}$ by $$\langle f, g \rangle_{\pi} = \sum_{x \in \mathcal{X}} f(x)g(x)\pi(x)$$ is an inner product on $\mathbb{R}^{|\mathcal{X}|}$, which is a Hilbert space with respect to $\langle\cdot,\cdot\rangle_{\pi}$. So... ## The spectral representation of the chain Spectral Theory of Finite Markov Chains Austin Eide Preliminaries Spectral Rep. Chains Examples Intuition: the Dirichlet Energy References #### Lemma Let P be aperiodic, irreducible, and reversible with respect to π . Then: - **1** P is a self-adjoint operator on $(\mathbb{R}^{|\mathcal{X}|}, \langle \cdot, \cdot \rangle_{\pi})$. - 2 1 has multiplicity 1 as an eigenvalue of P, and the corresponding (right) eigenspace is spanned by the all 1's vector 1. - \bullet -1 is not an eigenvalue of P. ### The spectral representation of the chain Spectral Theory of Finite Markov Chains Austin Eide Preliminaries Spectral Rep. Chains Examples Intuition: the Dirichlet Energy References #### Lemma Let P be aperiodic, irreducible, and reversible with respect to π . Then: - **1** P is a self-adjoint operator on $(\mathbb{R}^{|\mathcal{X}|}, \langle \cdot, \cdot \rangle_{\pi})$. - ② 1 has multiplicity 1 as an eigenvalue of P, and the corresponding (right) eigenspace is spanned by the all 1's vector 1. - \bullet -1 is not an eigenvalue of P. Let $\lambda_* = \max\{|\lambda| : \lambda \in \operatorname{spec}(P), \lambda \neq 1\}.$ ### The spectral representation of the chain Spectral Theory of Finite Markov Chains Austin Eide Preliminaries Spectral Rep. Chains Examples Intuition: the Dirichlet Energy References #### Lemma Let P be aperiodic, irreducible, and reversible with respect to π . Then: - **1** P is a self-adjoint operator on $(\mathbb{R}^{|\mathcal{X}|}, \langle \cdot, \cdot \rangle_{\pi})$. - 2 1 has multiplicity 1 as an eigenvalue of P, and the corresponding (right) eigenspace is spanned by the all 1's vector 1. - \bullet -1 is not an eigenvalue of P. Let $\lambda_* = \max\{|\lambda| : \lambda \in \operatorname{spec}(P), \lambda \neq 1\}$. By the above and fact $\sigma(P) = 1$, have $0 \leq \lambda_* < 1$. Spectral Theory of Finite Markov Chains Austin Eide Preliminaries Spectral Rep. Chains Examples Intuition: the Dirichlet Energy References #### Recall $$d(t) = \max_{x \in \mathcal{X}} \left\| \mu_x P^t - \pi \right\|_{TV}.$$ Spectral Theory of Finite Markov Chains Austin Eide Preliminaries Spectral Rep. Chains Examples Intuition: the Dirichlet Energy References #### Recall $$d(t) = \max_{x \in \mathcal{X}} \left\| \mu_x P^t - \pi \right\|_{TV}.$$ λ_* controls the asymptotic (in t) rate of convergence of d(t) to 0, i.e., for some c and C which depend on P we have $$c\lambda_*^t \le d(t) \le C\lambda_*^t$$. Spectral Theory of Finite Markov Chains Austin Eide Preliminaries Spectral Rep. Examples Intuition: the Dirichlet Energy References A statistical perspective: think of vector $f \in \mathbb{R}^{|\mathcal{X}|}$ as a function ("statistic") on \mathcal{X} . Spectral Theory of Finite Markov Chains Austin Eide Preliminaries Spectral Rep. Chains Examples Intuition: the Dirichlet Energy References A statistical perspective: think of vector $f \in \mathbb{R}^{|\mathcal{X}|}$ as a function ("statistic") on \mathcal{X} . Distinguish the distributions $\mu_x P^t$ and π using the statistic f. Spectral Theory of Finite Markov Chains Austin Eide Preliminaries Spectral Rep. Chains Examples Intuition: the Dirichlet Energy References A statistical perspective: think of vector $f \in \mathbb{R}^{|\mathcal{X}|}$ as a function ("statistic") on \mathcal{X} . Distinguish the distributions $\mu_x P^t$ and π using the statistic f. Spectral Theory of Finite Markov Chains Austin Eide Preliminaries Spectral Rep. Examples Intuition: the Dirichlet Energy References ### Theorem (Spectral Lower Bound) For P as before, $\varepsilon > 0$: $$t_{\textit{mix}}(arepsilon) \geq \left(rac{1}{1-\lambda_*} - 1 ight) \log rac{1}{2arepsilon}.$$ Spectral Theory of Finite Markov Chains Austin Eide Preliminaries Spectral Rep. Chains Examples Intuition: the Dirichlet Energy References ### Theorem (Spectral Lower Bound) For P as before, $\varepsilon > 0$: $$t_{\textit{mix}}(\varepsilon) \ge \left(\frac{1}{1-\lambda_*} - 1\right) \log \frac{1}{2\varepsilon}.$$ #### Proof. For any $f \in \mathbb{R}^{|\mathcal{X}|}$ and $x \in \mathcal{X}$, Spectral Theory of Finite Markov Chains Austin Eide Preliminaries Spectral Rep. Chains Examples Intuition: the Dirichlet Energy References ### Theorem (Spectral Lower Bound) For P as before, $\varepsilon > 0$: $$t_{\textit{mix}}(\varepsilon) \geq \left(\frac{1}{1 - \lambda_*} - 1\right) \log \frac{1}{2\varepsilon}.$$ #### Proof. For any $f \in \mathbb{R}^{|\mathcal{X}|}$ and $x \in \mathcal{X}$, $$|\mathbb{E}_{\mu_x P^t}(f) - \mathbb{E}_{\pi}(f)| =$$ Spectral Theory of Finite Markov Chains Austin Eide Preliminaries Spectral Rep. Examples Intuition: the Dirichlet Energy References ### Theorem (Spectral Lower Bound) For P as before, $\varepsilon > 0$: $$t_{\mathit{mix}}(\varepsilon) \geq \left(\frac{1}{1-\lambda_*} - 1\right)\log\frac{1}{2\varepsilon}.$$ #### Proof. For any $f \in \mathbb{R}^{|\mathcal{X}|}$ and $x \in \mathcal{X}$, $$|\mathbb{E}_{\mu_x P^t}(f) - \mathbb{E}_{\pi}(f)| = \left| \sum_{y \in \mathcal{X}} (\mu_x P^t(y) - \pi(y)) f(y) \right|$$ Spectral Theory of Finite Markov Chains Austin Eide Preliminaries Spectral Rep. Examples Intuition: the Dirichlet Energy References ### Theorem (Spectral Lower Bound) For P as before, $\varepsilon > 0$: $$t_{\textit{mix}}(\varepsilon) \ge \left(\frac{1}{1-\lambda_{\star}} - 1\right) \log \frac{1}{2\varepsilon}.$$ ### Proof. For any $f \in \mathbb{R}^{|\mathcal{X}|}$ and $x \in \mathcal{X}$, $$|\mathbb{E}_{\mu_x P^t}(f) - \mathbb{E}_{\pi}(f)| = \left| \sum_{y \in \mathcal{X}} (\mu_x P^t(y) - \pi(y)) f(y) \right|$$ $$\leq ||f||_{\infty} 2d(t)$$ where $\mathbb{E}_{\nu}(\cdot)$ is expected value taken against distribution ν . Spectral Theory of Finite Markov Chains Austin Eide Preliminaries Spectral Rep. Chains Examples Intuition: the Dirichlet Energy References #### Proof. We have $|\mathbb{E}_{\mu_x P^t}(f) - \mathbb{E}_{\pi}(f)| \leq \|f\|_{\infty} 2d(t)$. So any lower bound on the LHS gives a lower bound on d(t). Spectral Theory of Finite Markov Chains Austin Eide Preliminaries Spectral Rep. Chains Examples Intuition: the Dirichlet Energy References #### Proof. We have $|\mathbb{E}_{\mu_x P^t}(f) - \mathbb{E}_{\pi}(f)| \leq ||f||_{\infty} 2d(t)$. So any lower bound on the LHS gives a lower bound on d(t). Preliminaries Spectral Rep. Chains Examples Intuition: the Dirichlet Energy References #### Proof. We have $|\mathbb{E}_{\mu_x P^t}(f) - \mathbb{E}_{\pi}(f)| \leq ||f||_{\infty} 2d(t)$. So any lower bound on the LHS gives a lower bound on d(t). Spectral Theory of Finite Markov Chains Austin Eide Preliminaries Spectral Rep. Chains Examples Intuition: the Dirichlet Energy References #### Proof. We have $|\mathbb{E}_{\mu_x P^t}(f) - \mathbb{E}_{\pi}(f)| \leq ||f||_{\infty} 2d(t)$. So any lower bound on the LHS gives a lower bound on d(t). Spectral Theory of Finite Markov Chains Austin Eide Preliminaries Spectral Rep. Chains Examples Intuition: the Dirichlet Energy References #### Proof. We have $|\mathbb{E}_{\mu_x P^t}(f) - \mathbb{E}_{\pi}(f)| \leq ||f||_{\infty} 2d(t)$. So any lower bound on the LHS gives a lower bound on d(t). Preliminaries Spectral Rep. Chains Examples Intuition: the Dirichlet Energy References #### Proof. We have $|\mathbb{E}_{\mu_x P^t}(f) - \mathbb{E}_{\pi}(f)| \leq \|f\|_{\infty} 2d(t)$. So any lower bound on the LHS gives a lower bound on d(t). Spectral Theory of Finite Markov Chains Austin Eide Preliminaries Spectral Rep. Chains Examples Intuition: the Dirichlet Energy References #### Proof. We have $|\mathbb{E}_{\mu_x P^t}(f) - \mathbb{E}_{\pi}(f)| \leq ||f||_{\infty} 2d(t)$. So any lower bound on the LHS gives a lower bound on d(t). Spectral Theory of Finite Markov Chains Austin Eide Preliminaries Spectral Rep. Chains Examples Intuition: the Dirichlet Energy References #### Proof. We have $|\mathbb{E}_{\mu_x P^t}(f) - \mathbb{E}_{\pi}(f)| \leq ||f||_{\infty} 2d(t)$. So any lower bound on the LHS gives a lower bound on d(t). $$\bullet \quad \mathbb{E}_{\pi}(f) = \pi f = \pi P f = \lambda \pi f = \lambda \mathbb{E}_{\pi}(f) \implies \mathbb{E}_{\pi}(f) = 0.$$ Preliminaries Spectral Rep. Chains Examples Examples Intuition: the Dirichlet Energy References #### Proof. We have $|\mathbb{E}_{\mu_x P^t}(f) - \mathbb{E}_{\pi}(f)| \leq ||f||_{\infty} 2d(t)$. So any lower bound on the LHS gives a lower bound on d(t). $$\bullet \quad \mathbb{E}_{\pi}(f) = \pi f = \pi P f = \lambda \pi f = \lambda \mathbb{E}_{\pi}(f) \implies \mathbb{E}_{\pi}(f) = 0.$$ Spectral Theory of Finite Markov Chains Austin Eide Preliminaries Spectral Rep. Chains Examples Intuition: the Dirichlet Energy References #### Proof. We have $|\mathbb{E}_{\mu_x P^t}(f) - \mathbb{E}_{\pi}(f)| \leq ||f||_{\infty} 2d(t)$. So any lower bound on the LHS gives a lower bound on d(t). $$\bullet \ \mathbb{E}_{\pi}(f) = \pi f = \pi P f = \lambda \pi f = \lambda \mathbb{E}_{\pi}(f) \implies \mathbb{E}_{\pi}(f) = 0.$$ Spectral Theory of Finite Markov Chains Austin Eide Preliminaries Spectral Rep. Chains Examples Examples Intuition: the Dirichlet Energy References #### Proof. We have $|\mathbb{E}_{\mu_x P^t}(f) - \mathbb{E}_{\pi}(f)| \leq ||f||_{\infty} 2d(t)$. So any lower bound on the LHS gives a lower bound on d(t). $$\bullet \quad \mathbb{E}_{\pi}(f) = \pi f = \pi P f = \lambda \pi f = \lambda \mathbb{E}_{\pi}(f) \implies \mathbb{E}_{\pi}(f) = 0.$$ $$\mathbb{E}_{\mu_x P^t}(f) = \mu_x P^t f = \mu_x \lambda^t f =$$ Spectral Theory of Finite Markov Chains Austin Eide Preliminaries Spectral Rep. Chains Examples Intuition: the Dirichlet Energy References #### Proof. We have $|\mathbb{E}_{\mu_x P^t}(f) - \mathbb{E}_{\pi}(f)| \leq \|f\|_{\infty} \, 2d(t)$. So any lower bound on the LHS gives a lower bound on d(t). $$\mathbb{E}_{\mu_x P^t}(f) = \mu_x P^t f = \mu_x \lambda^t f = \lambda^t f(x).$$ Spectral Theory of Finite Markov Chains Austin Eide Preliminaries Spectral Rep. Chains Examples Intuition: the Dirichlet Energy References #### Proof. We have $|\mathbb{E}_{\mu_x P^t}(f) - \mathbb{E}_{\pi}(f)| \leq ||f||_{\infty} 2d(t)$. So any lower bound on the LHS gives a lower bound on d(t). If f is an eigenvector of P with eigenvalue $\lambda \neq 1$, we know two things: $$\mathbb{E}_{\mu_x P^t}(f) = \mu_x P^t f = \mu_x \lambda^t f = \lambda^t f(x).$$ So $|\lambda^t f(x)| \leq \|f\|_{\infty} 2d(t)$ for any x and eigenvalue $\lambda \neq 1$. Spectral Theory of Finite Markov Chains Austin Eide Preliminaries Spectral Rep. Chains Examples Intuition: the Dirichlet Energy References ### Proof. Optimizing over x and λ gives $\frac{\lambda_{*}^{t}}{2} \leq d(t)$. Spectral Theory of Finite Markov Chains Austin Eide Preliminaries Spectral Rep. Chains Examples Intuition: the Dirichlet Energy References #### Proof. Optimizing over x and λ gives $\frac{\lambda_{t}^{t}}{2} \leq d(t)$. Setting the LHS to be at least $\boldsymbol{\varepsilon}$ and solving for t yields $$t_{\mathsf{mix}}(\varepsilon) \ge \left(\frac{1}{1-\lambda_*} - 1\right) \log \frac{1}{2\varepsilon}.$$ Spectral Theory of Finite Markov Chains Austin Eide Preliminaries Spectral Rep. Chains Examples Intuition: the Dirichlet Energy References #### Proof. Optimizing over x and λ gives $\frac{\lambda_{t}^{*}}{2} \leq d(t)$. Setting the LHS to be at least ε and solving for t yields $$t_{\mathsf{mix}}(\varepsilon) \ge \left(\frac{1}{1-\lambda_*} - 1\right) \log \frac{1}{2\varepsilon}.$$ This can be understood as a "first moment" bound, i.e., relying only on expectations. If variances are computable, better bounds sometimes exist. Spectral Theory of Finite Markov Chains Austin Eide Preliminaries Spectral Rep. Examples Intuition: the Dirichlet Energy References ### Theorem (Spectral Upper Bound) P as before, $\varepsilon > 0$: $$t_{mix}(\varepsilon) \le \frac{1}{1 - \lambda_*} \log \frac{1}{\varepsilon \pi_{\min}}$$ Spectral Theory of Finite Markov Chains Austin Eide Preliminaries Spectral Rep. Chains Examples Intuition: the Dirichlet Energy References ### Theorem (Spectral Upper Bound) P as before, $\varepsilon > 0$: $$t_{mix}(\varepsilon) \le \frac{1}{1 - \lambda_*} \log \frac{1}{\varepsilon \pi_{\min}}$$ #### Proof. A bit more technical, uses the diagonalization of P. Preliminaries Spectral Rep. Chains Examples Intuition: the Dirichlet Energy $$\left(\frac{1}{1-\lambda_*}-1\right)\log\frac{1}{2\varepsilon} \leq t_{\mathsf{mix}}(\varepsilon) \leq \frac{1}{1-\lambda_*}\log\frac{1}{\varepsilon\pi_{\min}}$$ Preliminaries Spectral Rep. Chains Examples Intuition: the Dirichlet Energy References $$\left(\frac{1}{1-\lambda_*}-1\right)\log\frac{1}{2\varepsilon} \leq t_{\mathsf{mix}}(\varepsilon) \leq \frac{1}{1-\lambda_*}\log\frac{1}{\varepsilon\pi_{\min}}$$ • For a fixed chain, these bounds are quite tight... Preliminaries Spectral Rep. Chains Examples Intuition: the Dirichlet Energy $$\left(\frac{1}{1-\lambda_*}-1\right)\log\frac{1}{2\varepsilon} \leq t_{\mathsf{mix}}(\varepsilon) \leq \frac{1}{1-\lambda_*}\log\frac{1}{\varepsilon\pi_{\min}}$$ - For a fixed chain, these bounds are quite tight... - But common to have $|\mathcal{X}| = n$ and $n \to \infty$. Preliminaries Spectral Rep. Chains Examples Intuition: the Dirichlet Energy $$\left(\frac{1}{1-\lambda_*}-1\right)\log\frac{1}{2\varepsilon} \leq t_{\mathsf{mix}}(\varepsilon) \leq \frac{1}{1-\lambda_*}\log\frac{1}{\varepsilon\pi_{\min}}$$ - For a fixed chain, these bounds are quite tight... - But common to have $|\mathcal{X}| = n$ and $n \to \infty$. Here, you pay a price for the $\log \frac{1}{\pi_{\min}}$. ### Remarks Spectral Theory of Finite Markov Chains Austin Eide Preliminaries Spectral Rep. Chains Examples Intuition: the Dirichlet Energy $$\left(\frac{1}{1-\lambda_*}-1\right)\log\frac{1}{2\varepsilon} \leq t_{\mathsf{mix}}(\varepsilon) \leq \frac{1}{1-\lambda_*}\log\frac{1}{\varepsilon\pi_{\min}}$$ - For a fixed chain, these bounds are quite tight... - But common to have $|\mathcal{X}|=n$ and $n\to\infty$. Here, you pay a price for the $\log\frac{1}{\pi_{\min}}$. - In many chains like this, a *cutoff phenomenon* is observed: as $n \to \infty$, d(t) approaches a step function which jumps from 1 (completely unmixed) to 0 (completely mixed) at a critical threshold $t_* = t_*(n)$. ### The Cycle Spectral Theory of Finite Markov Chains Austin Eide Preliminaries Spectral Rep. Chains Examples Intuition: the Dirichlet Energy References Random walk on the (odd) n-cycle has eigenvalues $$\left\{\cos\frac{2\pi j}{n}\right\}_{j=0}^{\frac{n-1}{2}}.$$ # The Cycle Spectral Theory of Finite Markov Chains Austin Eide **Preliminaries** Spectral Rep. Examples Intuition: the Dirichlet Energy References Random walk on the (odd) n-cycle has eigenvalues $$\left\{\cos\frac{2\pi j}{n}\right\}_{j=0}^{\frac{n-1}{2}}$$. So $\lambda_* = \cos\frac{2\pi}{n} = 1 - \frac{2\pi^2}{n^2} + O(n^{-4})$. # The Cycle Spectral Theory of Finite Markov Chains Austin Eide Preliminaries Spectral Rep. Examples Intuition: the Dirichlet Energy References Random walk on the (odd) n-cycle has eigenvalues $$\left\{\cos\frac{2\pi j}{n}\right\}_{j=0}^{\frac{n-1}{2}}$$. So $\lambda_* = \cos\frac{2\pi}{n} = 1 - \frac{2\pi^2}{n^2} + O(n^{-4})$. Since stationary is uniform, our bounds give $$\frac{\pi^2 n^2}{2} \log \frac{1}{2\varepsilon} \lesssim t_{\mathsf{mix}}(\varepsilon) \lesssim \frac{\pi^2 n^2}{2} \log \frac{n}{\varepsilon}$$ # Card Shuffling Spectral Theory of Finite Markov Chains Austin Eide Preliminaries Spectral Rep. Chains Examples Intuition: the Dirichlet Energy References Think of S_n as set of orderings of an n-card deck, laid side-by-side on a table. # Card Shuffling Spectral Theory of Finite Markov Chains Austin Eide Preliminaries Spectral Rep. Chains Examples Intuition: the Dirichlet Energy References Think of S_n as set of orderings of an n-card deck, laid side-by-side on a table. Consider the Markov chain on S_n obtained by iterating the following rule: pick a random pair of cards and transpose them. # Card Shuffling Spectral Theory of Finite Markov Chains Austin Eide Preliminaries Spectral Rep. Chains Lxamples Intuition: the Dirichlet Energy References Think of S_n as set of orderings of an n-card deck, laid side-by-side on a table. Consider the Markov chain on S_n obtained by iterating the following rule: pick a random pair of cards and transpose them. #### Theorem (Diaconis & Shashashani '81) For this chain, for any $\varepsilon > 0$ $$t_{mix}(\varepsilon) \sim \frac{1}{2} n \log n$$ (independent of ε). Spectral Theory of Finite Markov Chains Austin Eide Preliminaries Spectral Rep. Examples Intuition: the Dirichlet Energy References Let P be reversible with respect to π . Spectral Theory of Finite Markov Chains Austin Eide Preliminaries Spectral Rep. Chains Examples Intuition: the Dirichlet Energy References Let P be reversible with respect to π . Spectral Theory of Finite Markov Chains Austin Eide Preliminaries Spectral Rep. Chains Examples Intuition: the Dirichlet Energy References Let P be reversible with respect to π . $$\mathcal{E}(f) := \frac{1}{2} \sum_{x,y \in \mathcal{X}} [f(x) - f(y)]^2 \pi(x) P(x,y)$$ Spectral Theory of Finite Markov Chains Austin Eide Preliminaries Spectral Rep. Chains Examples Examples Intuition: the Dirichlet Energy References Let P be reversible with respect to π . $$\mathcal{E}(f) := \frac{1}{2} \sum_{x,y \in \mathcal{X}} [f(x) - f(y)]^2 \pi(x) P(x,y) = \langle (I - P)f, f \rangle_{\pi}$$ Spectral Theory of Finite Markov Chains Austin Eide Preliminaries Spectral Rep. Chains Examples Lxamples Intuition: the Dirichlet Energy References Let P be reversible with respect to π . $$\mathcal{E}(f) := \frac{1}{2} \sum_{x,y \in \mathcal{X}} [f(x) - f(y)]^2 \pi(x) P(x,y) = \langle (I - P)f, f \rangle_{\pi}$$ $$\text{s.t. } f\cdot \mathbf{1}=0.$$ Spectral Theory of Finite Markov Chains Austin Eide Preliminaries Spectral Rep. Chains Examples Intuition: the Dirichlet Energy References Let P be reversible with respect to π . Challenge: pick a function $f \in \{\pm 1\}^{|\mathcal{X}|}$ minimizing $\frac{\mathcal{E}(f)}{\|f\|_2^2}$, where $$\mathcal{E}(f) := \frac{1}{2} \sum_{x,y \in \mathcal{X}} [f(x) - f(y)]^2 \pi(x) P(x,y) = \langle (I - P)f, f \rangle_{\pi}$$ $$\text{s.t. } f \cdot \mathbf{1} = 0.$$ If we identify P with it's edge weighted graph G_P , this is equivalent to finding a balanced labeling of the vertices of G_P with ± 1 minimizing the above. #### The Dirichlet Energy Spectral Theory of Finite Markov Chains Austin Eide Preliminaries Spectral Rep. Chains Examples Intuition: the Dirichlet Energy References Minimizing $\mathcal{E}(f)$ is analogous to the problem of minimizing #### The Dirichlet Energy Spectral Theory of Finite Markov Chains Austin Eide Preliminaries Spectral Rep. Chains Examples Intuition: the Dirichlet Energy References Minimizing $\mathcal{E}(f)$ is analogous to the problem of minimizing $$\int_{\Omega} \|\nabla u\|^2 \, dx$$ over $u:\Omega\subseteq\mathbb{R}^n\to\mathbb{R}$ s.t. some boundary conditions. #### The Dirichlet Energy Spectral Theory of Finite Markov Chains Austin Eide ${\sf Preliminaries}$ Spectral Rep. Chains Examples Intuition: the Dirichlet Energy References Minimizing $\mathcal{E}(f)$ is analogous to the problem of minimizing $$\int_{\Omega} \|\nabla u\|^2 \, dx$$ over $u:\Omega\subseteq\mathbb{R}^n\to\mathbb{R}$ s.t. some boundary conditions. To solve the continuous version, one solves Laplace's Equation $\Delta u=0. \label{eq:deltau}$ # The (Discrete) Dirichlet Energy Spectral Theory of Finite Markov Chains Austin Eide Preliminaries Spectral Rep. Chains Examples Intuition: the Dirichlet Energy References We can relax our combinatorial problem to minimizing $\frac{\mathcal{E}(f)}{\|f\|_2^2}$ over any $f \in \mathbb{R}^{|\mathcal{X}|}$ s.t. $\langle f, \mathbf{1} \rangle_\pi = 0$ (and $f \neq 0$). # The (Discrete) Dirichlet Energy Spectral Theory of Finite Markov Chains Austin Eide Preliminaries Spectral Rep. Chains Examples Examples Intuition: the Dirichlet Energy References We can relax our combinatorial problem to minimizing $\frac{\mathcal{E}(f)}{\|f\|_2^2}$ over any $f \in \mathbb{R}^{|\mathcal{X}|}$ s.t. $\langle f, \mathbf{1} \rangle_{\pi} = 0$ (and $f \neq 0$). #### Theorem Let P have eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_{|\mathcal{X}|}$ with eigenvectors $f_1, f_2, \ldots, f_{|\mathcal{X}|}$. The above optimization problem is solved by taking $f = 1 - f_2$, and thus has minimum value $\gamma = 1 - \lambda_2$. #### References Spectral Theory of Finite Markov Chains Austin Eide Preliminaries Spectral Rep. Chains Examples Intuition: the Dirichlet Energy References Markov Chains and Mixing Times. Levin, D., and Peres, Y.