

Spectral Theory of Finite Markov Chains

Austin Eide

Preliminaries

Spectral Rep. Chains

Examples

Intuition: the Dirichlet Energy

References

Spectral Theory of Finite Markov Chains

Austin Fide

University Of Nebraska - Lincoln

Spring 2020

Markov chains

Spectral Theory of Finite Markov Chains

Austin Eide

Preliminaries

Spectral Rep. Chains

_ .

Examples

Intuition: the Dirichlet Energy

References

Definition (Markov Chain)

A Markov chain on state space $\mathcal X$ is a sequence of $\mathcal X$ -valued r.v.'s (X_0,X_1,\dots) satisfying the *Markov property*:

$$\mathbf{P}(X_{t+1} = y | (X_t, \dots, X_0)) = \mathbf{P}(X_{t+1} = y | X_t = x) =: P(x, y)$$

Markov chains

Spectral Theory of Finite Markov Chains

Austin Eide

Preliminaries

Spectral Rep.

Chains

Examples

Intuition: the Dirichlet Energy

References

Definition (Markov Chain)

A Markov chain on state space \mathcal{X} is a sequence of \mathcal{X} -valued r.v.'s (X_0, X_1, \dots) satisfying the Markov property:

$$\mathbf{P}(X_{t+1} = y | (X_t, \dots, X_0)) = \mathbf{P}(X_{t+1} = y | X_t = x) =: P(x, y)$$

A chain is thus entirely described by an initial distribution $\mu_0 \in \mathbb{R}^{|\mathcal{X}|}$ for X_0 and a $|\mathcal{X}| \times |\mathcal{X}|$ row-stochastic matrix Pwhich stores transition probabilities.

Spectral Theory of Finite Markov Chains

Austin Eide

Preliminaries

Spectral Rep. Chains

Examples

Intuition: the Dirichlet Energy

References

Spectral Theory of Finite Markov Chains

Austin Eide

Preliminaries

Spectral Rep.

Chains

Examples

Intuition: the Dirichlet Energy

References

If today's distribution (i.e., the distribution on X_t) is μ_t , then tomorrow's distribution is $\mu_{t+1} = \mu_t P$.

Spectral Theory of Finite Markov Chains

Austin Eide

Preliminaries

Spectral Rep.

Chains Examples

xampies

Intuition: the Dirichlet Energy

References

If today's distribution (i.e., the distribution on X_t) is μ_t , then tomorrow's distribution is $\mu_{t+1} = \mu_t P$.

Given the initial distribution μ_0 , inductively we have $\mu_t = \mu_0 P^t$.

Spectral Theory of Finite Markov Chains

Austin Eide

Preliminaries

Spectral Rep.

Chains

Examples

Intuition: the Dirichlet Energy

References

If today's distribution (i.e., the distribution on X_t) is μ_t , then tomorrow's distribution is $\mu_{t+1} = \mu_t P$.

Given the initial distribution μ_0 , inductively we have $\mu_t = \mu_0 P^t$.

Note: almost always, we'll think of μ_0 as a point mass on some state $x \in \mathcal{X}$.

Spectral Theory of Finite Markov Chains

Austin Eide

Preliminaries

Spectral Rep. Chains

Examples

Intuition: the Dirichlet Energy

References

Spectral Theory of Finite Markov Chains

Austin Eide

Preliminaries

Spectral Rep. Chains

Examples

Intuition: the Dirichlet Energy

References

For $x,y\in\mathcal{X}$ and $t\geq0$, $P^t(x,y)$ is the probability of traveling from x to y in t steps.

Spectral Theory of Finite Markov Chains

Austin Eide

Preliminaries

Spectral Rep. Chains

Examples

Intuition: the Dirichlet Energy

References

For $x,y\in\mathcal{X}$ and $t\geq0$, $P^t(x,y)$ is the probability of traveling from x to y in t steps.

Definition (I. & A.)

A chain is *irreducible* if \forall pairs $x,y\in\mathcal{X}$, \exists integer t with $P^t(x,y)>0$.

Spectral Theory of Finite Markov Chains

Austin Eide

Preliminaries

Spectral Rep. Chains

Examples

Intuition: the Dirichlet Energy

References

For $x,y\in\mathcal{X}$ and $t\geq0$, $P^t(x,y)$ is the probability of traveling from x to y in t steps.

Definition (I. & A.)

A chain is *irreducible* if \forall pairs $x,y\in\mathcal{X}$, \exists integer t with $P^t(x,y)>0.$

A chain is aperiodic if

$$\gcd\{t \ge 1 : P^t(x, x) > 0\} = 1.$$

Spectral Theory of Finite Markov Chains

Austin Eide

Preliminaries

Spectral Rep. Chains

Examples

Intuition: the Dirichlet Energy

References

For $x,y\in\mathcal{X}$ and $t\geq0$, $P^t(x,y)$ is the probability of traveling from x to y in t steps.

Definition (I. & A.)

A chain is *irreducible* if \forall pairs $x,y\in\mathcal{X}$, \exists integer t with $P^t(x,y)>0.$

A chain is aperiodic if

$$\gcd\{t \ge 1 : P^t(x, x) > 0\} = 1.$$

(For example, a "bipartite" chain *is* periodic, since then the above quantity is 2.)

Spectral Theory of Finite Markov Chains

Austin Eide

Preliminaries

Spectral Rep. Chains

Examples

Intuition: the Dirichlet Energy

References

<u>Theorem</u>

If P is irreducible and aperiodic, then $\exists !$ distribution π such that $\pi P = \pi$, and moreover for any μ_0 we have $\mu_0 P^t \to \pi$.

Spectral Theory of Finite Markov Chains

Austin Eide

Preliminaries

Spectral Rep. Chains

Examples

Intuition: the Dirichlet Energy

References

Theorem

If P is irreducible and aperiodic, then $\exists !$ distribution π such that $\pi P = \pi$, and moreover for any μ_0 we have $\mu_0 P^t \to \pi$.

Proof.

 $I + A \implies P^t > 0$ for all t sufficiently large.

Spectral Theory of Finite Markov Chains

Austin Eide

Preliminaries

Spectral Rep.

Chains

Examples

Intuition: the Dirichlet Energy

References

Theorem

If P is irreducible and aperiodic, then $\exists !$ distribution π such that $\pi P = \pi$, and moreover for any μ_0 we have $\mu_0 P^t \to \pi$.

Proof.

 $I + A \implies P^t > 0$ for all t sufficiently large.

Easy to show that $\sigma(P) \leq 1$, and that 1 is an eigenvalue.

Spectral Theory of Finite Markov Chains

Austin Eide

Preliminaries

Spectral Rep.

Chains

Examples

Intuition: the Dirichlet Energy

References

Theorem

If P is irreducible and aperiodic, then $\exists !$ distribution π such that $\pi P = \pi$, and moreover for any μ_0 we have $\mu_0 P^t \to \pi$.

Proof.

 $I + A \implies P^t > 0$ for all t sufficiently large.

Easy to show that $\sigma(P) \leq 1$, and that 1 is an eigenvalue.

Thus, by Perron-Frobenius (and a corollary thereof):

Spectral Theory of Finite Markov Chains

Austin Eide

Preliminaries

Spectral Rep.

Chains

Examples

Intuition: the Dirichlet Energy

References

Theorem

If P is irreducible and aperiodic, then $\exists !$ distribution π such that $\pi P = \pi$, and moreover for any μ_0 we have $\mu_0 P^t \to \pi$.

Proof.

 $I + A \implies P^t > 0$ for all t sufficiently large.

Easy to show that $\sigma(P) \leq 1$, and that 1 is an eigenvalue.

Thus, by Perron-Frobenius (and a corollary thereof):

ullet P has a unique, strictly positive left eigenvector π with eigenvalue 1—the stationary distribution of P

Spectral Theory of Finite Markov Chains

Austin Eide

Preliminaries

Spectral Rep. Chains

Examples

Intuition: the Dirichlet Energy

References

Theorem

If P is irreducible and aperiodic, then $\exists !$ distribution π such that $\pi P = \pi$, and moreover for any μ_0 we have $\mu_0 P^t \to \pi$.

Proof.

 $I + A \implies P^t > 0$ for all t sufficiently large.

Easy to show that $\sigma(P) \leq 1$, and that 1 is an eigenvalue.

Thus, by Perron-Frobenius (and a corollary thereof):

- P has a unique, strictly positive left eigenvector π with eigenvalue 1—the stationary distribution of P
- For any distribution μ_0 on \mathcal{X} , $\mu_0 P^t \to \pi$

Convergence in...?

Spectral Theory of Finite Markov Chains

Austin Eide

Preliminaries

Spectral Rep. Chains

 ${\sf Examples}$

Intuition: the Dirichlet Energy

References

Usually,

Convergence in...?

Spectral Theory of Finite Markov Chains

Austin Eide

Preliminaries

Spectral Rep.

Chains

Examples

Intuition: the Dirichlet Energy

References

Usually,

Definition (Total Variation Distance)

For probability distributions $\mu, \nu \in \mathbb{R}^{|\mathcal{X}|}$ on \mathcal{X} , define

$$\|\mu - \nu\|_{TV} = \frac{1}{2} \sum_{x \in \mathcal{X}} |\mu(x) - \nu(x)| = \frac{1}{2} \|\mu - \nu\|_{1}.$$

Convergence in...?

Spectral Theory of Finite Markov Chains

Austin Eide

Preliminaries

Spectral Rep.

Chains

Examples

Intuition: the Dirichlet Energy

References

Usually,

Definition (Total Variation Distance)

For probability distributions $\mu, \nu \in \mathbb{R}^{|\mathcal{X}|}$ on \mathcal{X} , define

$$\|\mu - \nu\|_{TV} = \frac{1}{2} \sum_{x \in \mathcal{X}} |\mu(x) - \nu(x)| = \frac{1}{2} \|\mu - \nu\|_1.$$

Equivalent to $\|\mu - \nu\|_{TV} = \max_{A \subset \Omega} |\mu(A) - \nu(A)|$.

Mixing times

Spectral Theory of Finite Markov Chains

Austin Eide

Preliminaries

Spectral Rep. Chains

Examples

Intuition: the Dirichlet Energy

References

For $x \in \mathcal{X}$, let $\mu_x \in \mathbb{R}^{|\mathcal{X}|}$ be the point-mass distribution at x.

References

For $x \in \mathcal{X}$, let $\mu_x \in \mathbb{R}^{|\mathcal{X}|}$ be the point-mass distribution at x.

Define
$$d(t) := \max_{x} \left\| \mu_x P^t - \pi \right\|_{TV}$$
.

References

For $x \in \mathcal{X}$, let $\mu_x \in \mathbb{R}^{|\mathcal{X}|}$ be the point-mass distribution at x.

Define
$$d(t) := \max_{x} \left\| \mu_x P^t - \pi \right\|_{TV}$$
.

For
$$\varepsilon>0$$
, define $t_{\mathrm{mix}}(\varepsilon)=\min\{t\in\mathbb{Z}_{\geq0}:d(t)<\varepsilon\}.$

References

For $x \in \mathcal{X}$, let $\mu_x \in \mathbb{R}^{|\mathcal{X}|}$ be the point-mass distribution at x.

Define
$$d(t) := \max_{x} \left\| \mu_x P^t - \pi \right\|_{TV}$$
.

For
$$\varepsilon>0$$
, define $t_{\mathrm{mix}}(\varepsilon)=\min\{t\in\mathbb{Z}_{\geq0}:d(t)<\varepsilon\}.$

 $t_{\mathrm{mix}}(\varepsilon)$ is the (ε) -mixing time of the chain.

Spectral Theory of Finite Markov Chains

Austin Eide

Preliminaries

Spectral Rep. Chains

Examples

Intuition: the Dirichlet Energy

References

Henceforth, we'll restrict attention to chains which are *random* walks on edge-weighted graphs

Spectral Theory of Finite Markov Chains

Austin Eide

Preliminaries

Spectral Rep. Chains

Examples

Intuition: the Dirichlet Energy

References

Henceforth, we'll restrict attention to chains which are *random* walks on edge-weighted graphs

Spectral Theory of Finite Markov Chains

Austin Eide

Preliminaries

Spectral Rep. Chains

Examples

Intuition: the Dirichlet Energy

References

Henceforth, we'll restrict attention to chains which are random walks on edge-weighted graphs

Proceed by $P(x, y_i) = \frac{w_i}{\sum w_i}$.

Spectral Theory of Finite Markov Chains

Austin Eide

Preliminaries

Spectral Rep. Chains

Examples

Intuition: the Dirichlet Energy

References

Henceforth, we'll restrict attention to chains which are *random* walks on edge-weighted graphs

Proceed by $P(x,y_i)=\frac{w_i}{\sum w_i}.$ What do we get when all edges have weight 1?

Spectral Theory of Finite Markov Chains

Austin Eide

Preliminaries

Spectral Rep. Chains

Examples

Intuition: the Dirichlet Energy

References

Reversibility is the core property relating general chains to r.w.'s on graphs.

Spectral Theory of Finite Markov Chains

Austin Eide

Preliminaries

Spectral Rep.

Chains

Examples

Intuition: the Dirichlet Energy

References

Reversibility is the core property relating general chains to r.w.'s on graphs.

Definition (Reversibility)

A Markov chain is *reversible* with respect to stationary distribution π if $\forall x,y\in\mathcal{X}$,

$$\pi(x)P(x,y) = \pi(y)P(y,x).$$

Spectral Theory of Finite Markov Chains

Austin Eide

Preliminaries

Spectral Rep.

Chains

Examples

Intuition: the Dirichlet Energy

References

Reversibility is the core property relating general chains to r.w.'s on graphs.

Definition (Reversibility)

A Markov chain is *reversible* with respect to stationary distribution π if $\forall x,y\in\mathcal{X}$,

$$\pi(x)P(x,y) = \pi(y)P(y,x).$$

 $\{\text{reversible chains } P\} \iff \{\text{weighted graphs}\}$

$$P\mapsto G_P$$
 where $V(G_P)=\mathcal{X}$, edge weights $\pi(x)P(x,y)=\pi(y)P(y,x)$

Reversibility aka "Detailed Balance"

Spectral Theory of Finite Markov Chains

Austin Eide

Preliminaries

Spectral Rep. Chains

Examples

Intuition: the Dirichlet Energy

References

The π -inner product

Spectral Theory of Finite Markov Chains

Austin Eide

Preliminaries

Spectral Rep. Chains

Examples

Intuition: the Dirichlet Energy

References

If P is irreducible and reversible w.r.t. π , then $\langle\cdot,\cdot\rangle_\pi:\mathbb{R}^{|\mathcal{X}|}\to\mathbb{R}$ by

$$\langle f, g \rangle_{\pi} = \sum_{x \in \mathcal{X}} f(x)g(x)\pi(x)$$

is an inner product on $\mathbb{R}^{|\mathcal{X}|}$, which is a Hilbert space with respect to $\langle\cdot,\cdot\rangle_{\pi}$.

Austin Eide

Preliminaries

Spectral Rep. Chains

Examples

Intuition: the Dirichlet Energy

References

If P is irreducible and reversible w.r.t. π , then $\langle\cdot,\cdot\rangle_\pi:\mathbb{R}^{|\mathcal{X}|}\to\mathbb{R}$ by

$$\langle f, g \rangle_{\pi} = \sum_{x \in \mathcal{X}} f(x)g(x)\pi(x)$$

is an inner product on $\mathbb{R}^{|\mathcal{X}|}$, which is a Hilbert space with respect to $\langle\cdot,\cdot\rangle_{\pi}$.

So...

The spectral representation of the chain

Spectral Theory of Finite Markov Chains

Austin Eide

Preliminaries

Spectral Rep. Chains

Examples

Intuition: the Dirichlet Energy

References

Lemma

Let P be aperiodic, irreducible, and reversible with respect to π . Then:

- **1** P is a self-adjoint operator on $(\mathbb{R}^{|\mathcal{X}|}, \langle \cdot, \cdot \rangle_{\pi})$.
- 2 1 has multiplicity 1 as an eigenvalue of P, and the corresponding (right) eigenspace is spanned by the all 1's vector 1.
- \bullet -1 is not an eigenvalue of P.

The spectral representation of the chain

Spectral Theory of Finite Markov Chains

Austin Eide

Preliminaries

Spectral Rep. Chains

Examples

Intuition: the Dirichlet Energy

References

Lemma

Let P be aperiodic, irreducible, and reversible with respect to π . Then:

- **1** P is a self-adjoint operator on $(\mathbb{R}^{|\mathcal{X}|}, \langle \cdot, \cdot \rangle_{\pi})$.
- ② 1 has multiplicity 1 as an eigenvalue of P, and the corresponding (right) eigenspace is spanned by the all 1's vector 1.
- \bullet -1 is not an eigenvalue of P.

Let $\lambda_* = \max\{|\lambda| : \lambda \in \operatorname{spec}(P), \lambda \neq 1\}.$

The spectral representation of the chain

Spectral Theory of Finite Markov Chains

Austin Eide

Preliminaries

Spectral Rep. Chains

Examples

Intuition: the Dirichlet Energy

References

Lemma

Let P be aperiodic, irreducible, and reversible with respect to π . Then:

- **1** P is a self-adjoint operator on $(\mathbb{R}^{|\mathcal{X}|}, \langle \cdot, \cdot \rangle_{\pi})$.
- 2 1 has multiplicity 1 as an eigenvalue of P, and the corresponding (right) eigenspace is spanned by the all 1's vector 1.
- \bullet -1 is not an eigenvalue of P.

Let $\lambda_* = \max\{|\lambda| : \lambda \in \operatorname{spec}(P), \lambda \neq 1\}$. By the above and fact $\sigma(P) = 1$, have $0 \leq \lambda_* < 1$.

Spectral Theory of Finite Markov Chains

Austin Eide

Preliminaries

Spectral Rep.

Chains Examples

Intuition: the Dirichlet Energy

References

Recall

$$d(t) = \max_{x \in \mathcal{X}} \left\| \mu_x P^t - \pi \right\|_{TV}.$$

Spectral Theory of Finite Markov Chains

Austin Eide

Preliminaries

Spectral Rep. Chains

Examples

Intuition: the Dirichlet Energy

References

Recall

$$d(t) = \max_{x \in \mathcal{X}} \left\| \mu_x P^t - \pi \right\|_{TV}.$$

 λ_* controls the asymptotic (in t) rate of convergence of d(t) to 0, i.e., for some c and C which depend on P we have

$$c\lambda_*^t \le d(t) \le C\lambda_*^t$$
.

Spectral Theory of Finite Markov Chains

Austin Eide

Preliminaries

Spectral Rep.

Examples

Intuition: the Dirichlet Energy

References

A statistical perspective: think of vector $f \in \mathbb{R}^{|\mathcal{X}|}$ as a function ("statistic") on \mathcal{X} .

Spectral Theory of Finite Markov Chains

Austin Eide

Preliminaries

Spectral Rep. Chains

Examples

Intuition: the Dirichlet Energy

References

A statistical perspective: think of vector $f \in \mathbb{R}^{|\mathcal{X}|}$ as a function ("statistic") on \mathcal{X} .

Distinguish the distributions $\mu_x P^t$ and π using the statistic f.

Spectral Theory of Finite Markov Chains

Austin Eide

Preliminaries

Spectral Rep. Chains

Examples

Intuition: the Dirichlet Energy

References

A statistical perspective: think of vector $f \in \mathbb{R}^{|\mathcal{X}|}$ as a function ("statistic") on \mathcal{X} .

Distinguish the distributions $\mu_x P^t$ and π using the statistic f.

Spectral Theory of Finite Markov Chains

Austin Eide

Preliminaries

Spectral Rep.

Examples

Intuition: the Dirichlet Energy

References

Theorem (Spectral Lower Bound)

For P as before, $\varepsilon > 0$:

$$t_{\textit{mix}}(arepsilon) \geq \left(rac{1}{1-\lambda_*} - 1
ight) \log rac{1}{2arepsilon}.$$

Spectral Theory of Finite Markov Chains

Austin Eide

Preliminaries

Spectral Rep. Chains

Examples

Intuition: the Dirichlet Energy

References

Theorem (Spectral Lower Bound)

For P as before, $\varepsilon > 0$:

$$t_{\textit{mix}}(\varepsilon) \ge \left(\frac{1}{1-\lambda_*} - 1\right) \log \frac{1}{2\varepsilon}.$$

Proof.

For any $f \in \mathbb{R}^{|\mathcal{X}|}$ and $x \in \mathcal{X}$,

Spectral Theory of Finite Markov Chains

Austin Eide

Preliminaries

Spectral Rep. Chains

Examples

Intuition: the Dirichlet Energy

References

Theorem (Spectral Lower Bound)

For P as before, $\varepsilon > 0$:

$$t_{\textit{mix}}(\varepsilon) \geq \left(\frac{1}{1 - \lambda_*} - 1\right) \log \frac{1}{2\varepsilon}.$$

Proof.

For any $f \in \mathbb{R}^{|\mathcal{X}|}$ and $x \in \mathcal{X}$,

$$|\mathbb{E}_{\mu_x P^t}(f) - \mathbb{E}_{\pi}(f)| =$$

Spectral Theory of Finite Markov Chains

Austin Eide

Preliminaries

Spectral Rep.

Examples

Intuition: the Dirichlet Energy

References

Theorem (Spectral Lower Bound)

For P as before, $\varepsilon > 0$:

$$t_{\mathit{mix}}(\varepsilon) \geq \left(\frac{1}{1-\lambda_*} - 1\right)\log\frac{1}{2\varepsilon}.$$

Proof.

For any $f \in \mathbb{R}^{|\mathcal{X}|}$ and $x \in \mathcal{X}$,

$$|\mathbb{E}_{\mu_x P^t}(f) - \mathbb{E}_{\pi}(f)| = \left| \sum_{y \in \mathcal{X}} (\mu_x P^t(y) - \pi(y)) f(y) \right|$$

Spectral Theory of Finite Markov Chains

Austin Eide

Preliminaries

Spectral Rep.

Examples

Intuition: the Dirichlet Energy

References

Theorem (Spectral Lower Bound)

For P as before, $\varepsilon > 0$:

$$t_{\textit{mix}}(\varepsilon) \ge \left(\frac{1}{1-\lambda_{\star}} - 1\right) \log \frac{1}{2\varepsilon}.$$

Proof.

For any $f \in \mathbb{R}^{|\mathcal{X}|}$ and $x \in \mathcal{X}$,

$$|\mathbb{E}_{\mu_x P^t}(f) - \mathbb{E}_{\pi}(f)| = \left| \sum_{y \in \mathcal{X}} (\mu_x P^t(y) - \pi(y)) f(y) \right|$$

$$\leq ||f||_{\infty} 2d(t)$$

where $\mathbb{E}_{\nu}(\cdot)$ is expected value taken against distribution ν .

Spectral Theory of Finite Markov Chains

Austin Eide

Preliminaries

Spectral Rep.

Chains

Examples

Intuition: the Dirichlet Energy

References

Proof.

We have $|\mathbb{E}_{\mu_x P^t}(f) - \mathbb{E}_{\pi}(f)| \leq \|f\|_{\infty} 2d(t)$. So any lower bound on the LHS gives a lower bound on d(t).

Spectral Theory of Finite Markov Chains

Austin Eide

Preliminaries

Spectral Rep.

Chains

Examples

Intuition: the Dirichlet Energy

References

Proof.

We have $|\mathbb{E}_{\mu_x P^t}(f) - \mathbb{E}_{\pi}(f)| \leq ||f||_{\infty} 2d(t)$. So any lower bound on the LHS gives a lower bound on d(t).

Preliminaries

Spectral Rep.

Chains

Examples

Intuition: the Dirichlet Energy

References

Proof.

We have $|\mathbb{E}_{\mu_x P^t}(f) - \mathbb{E}_{\pi}(f)| \leq ||f||_{\infty} 2d(t)$. So any lower bound on the LHS gives a lower bound on d(t).

Spectral Theory of Finite Markov Chains

Austin Eide

Preliminaries

Spectral Rep.

Chains

Examples

Intuition: the Dirichlet Energy

References

Proof.

We have $|\mathbb{E}_{\mu_x P^t}(f) - \mathbb{E}_{\pi}(f)| \leq ||f||_{\infty} 2d(t)$. So any lower bound on the LHS gives a lower bound on d(t).

Spectral Theory of Finite Markov Chains

Austin Eide

Preliminaries

Spectral Rep.

Chains

Examples

Intuition: the Dirichlet Energy

References

Proof.

We have $|\mathbb{E}_{\mu_x P^t}(f) - \mathbb{E}_{\pi}(f)| \leq ||f||_{\infty} 2d(t)$. So any lower bound on the LHS gives a lower bound on d(t).

Preliminaries

Spectral Rep.

Chains Examples

Intuition: the

Dirichlet Energy

References

Proof.

We have $|\mathbb{E}_{\mu_x P^t}(f) - \mathbb{E}_{\pi}(f)| \leq \|f\|_{\infty} 2d(t)$. So any lower bound on the LHS gives a lower bound on d(t).

Spectral Theory of Finite Markov Chains

Austin Eide

Preliminaries

Spectral Rep.

Chains

Examples

Intuition: the Dirichlet Energy

References

Proof.

We have $|\mathbb{E}_{\mu_x P^t}(f) - \mathbb{E}_{\pi}(f)| \leq ||f||_{\infty} 2d(t)$. So any lower bound on the LHS gives a lower bound on d(t).

Spectral Theory of Finite Markov Chains

Austin Eide

Preliminaries

Spectral Rep.

Chains Examples

Intuition: the

Dirichlet Energy

References

Proof.

We have $|\mathbb{E}_{\mu_x P^t}(f) - \mathbb{E}_{\pi}(f)| \leq ||f||_{\infty} 2d(t)$. So any lower bound on the LHS gives a lower bound on d(t).

$$\bullet \quad \mathbb{E}_{\pi}(f) = \pi f = \pi P f = \lambda \pi f = \lambda \mathbb{E}_{\pi}(f) \implies \mathbb{E}_{\pi}(f) = 0.$$

Preliminaries

Spectral Rep.

Chains Examples

Examples

Intuition: the Dirichlet Energy

References

Proof.

We have $|\mathbb{E}_{\mu_x P^t}(f) - \mathbb{E}_{\pi}(f)| \leq ||f||_{\infty} 2d(t)$. So any lower bound on the LHS gives a lower bound on d(t).

$$\bullet \quad \mathbb{E}_{\pi}(f) = \pi f = \pi P f = \lambda \pi f = \lambda \mathbb{E}_{\pi}(f) \implies \mathbb{E}_{\pi}(f) = 0.$$

Spectral Theory of Finite Markov Chains

Austin Eide

Preliminaries

Spectral Rep.

Chains Examples

Intuition: the

Dirichlet Energy

References

Proof.

We have $|\mathbb{E}_{\mu_x P^t}(f) - \mathbb{E}_{\pi}(f)| \leq ||f||_{\infty} 2d(t)$. So any lower bound on the LHS gives a lower bound on d(t).

$$\bullet \ \mathbb{E}_{\pi}(f) = \pi f = \pi P f = \lambda \pi f = \lambda \mathbb{E}_{\pi}(f) \implies \mathbb{E}_{\pi}(f) = 0.$$

Spectral Theory of Finite Markov Chains

Austin Eide

Preliminaries

Spectral Rep.

Chains Examples

Examples

Intuition: the Dirichlet Energy

References

Proof.

We have $|\mathbb{E}_{\mu_x P^t}(f) - \mathbb{E}_{\pi}(f)| \leq ||f||_{\infty} 2d(t)$. So any lower bound on the LHS gives a lower bound on d(t).

$$\bullet \quad \mathbb{E}_{\pi}(f) = \pi f = \pi P f = \lambda \pi f = \lambda \mathbb{E}_{\pi}(f) \implies \mathbb{E}_{\pi}(f) = 0.$$

$$\mathbb{E}_{\mu_x P^t}(f) = \mu_x P^t f = \mu_x \lambda^t f =$$

Spectral Theory of Finite Markov Chains

Austin Eide

Preliminaries

Spectral Rep.

Chains

Examples

Intuition: the Dirichlet Energy

References

Proof.

We have $|\mathbb{E}_{\mu_x P^t}(f) - \mathbb{E}_{\pi}(f)| \leq \|f\|_{\infty} \, 2d(t)$. So any lower bound on the LHS gives a lower bound on d(t).

$$\mathbb{E}_{\mu_x P^t}(f) = \mu_x P^t f = \mu_x \lambda^t f = \lambda^t f(x).$$

Spectral Theory of Finite Markov Chains

Austin Eide

Preliminaries

Spectral Rep.

Chains Examples

Intuition: the

Dirichlet Energy

References

Proof.

We have $|\mathbb{E}_{\mu_x P^t}(f) - \mathbb{E}_{\pi}(f)| \leq ||f||_{\infty} 2d(t)$. So any lower bound on the LHS gives a lower bound on d(t).

If f is an eigenvector of P with eigenvalue $\lambda \neq 1$, we know two things:

$$\mathbb{E}_{\mu_x P^t}(f) = \mu_x P^t f = \mu_x \lambda^t f = \lambda^t f(x).$$

So $|\lambda^t f(x)| \leq \|f\|_{\infty} 2d(t)$ for any x and eigenvalue $\lambda \neq 1$.

Spectral Theory of Finite Markov Chains

Austin Eide

Preliminaries

Spectral Rep. Chains

Examples

Intuition: the Dirichlet Energy

References

Proof.

Optimizing over x and λ gives $\frac{\lambda_{*}^{t}}{2} \leq d(t)$.

Spectral Theory of Finite Markov Chains

Austin Eide

Preliminaries

Spectral Rep. Chains

Examples

Intuition: the Dirichlet Energy

References

Proof.

Optimizing over x and λ gives $\frac{\lambda_{t}^{t}}{2} \leq d(t)$.

Setting the LHS to be at least $\boldsymbol{\varepsilon}$ and solving for t yields

$$t_{\mathsf{mix}}(\varepsilon) \ge \left(\frac{1}{1-\lambda_*} - 1\right) \log \frac{1}{2\varepsilon}.$$

Spectral Theory of Finite Markov Chains

Austin Eide

Preliminaries

Spectral Rep. Chains

Examples

Intuition: the Dirichlet Energy

References

Proof.

Optimizing over x and λ gives $\frac{\lambda_{t}^{*}}{2} \leq d(t)$.

Setting the LHS to be at least ε and solving for t yields

$$t_{\mathsf{mix}}(\varepsilon) \ge \left(\frac{1}{1-\lambda_*} - 1\right) \log \frac{1}{2\varepsilon}.$$

This can be understood as a "first moment" bound, i.e., relying only on expectations. If variances are computable, better bounds sometimes exist.

Spectral Theory of Finite Markov Chains

Austin Eide

Preliminaries

Spectral Rep.

Examples

Intuition: the Dirichlet Energy

References

Theorem (Spectral Upper Bound)

P as before, $\varepsilon > 0$:

$$t_{mix}(\varepsilon) \le \frac{1}{1 - \lambda_*} \log \frac{1}{\varepsilon \pi_{\min}}$$

Spectral Theory of Finite Markov Chains

Austin Eide

Preliminaries

Spectral Rep. Chains

Examples

Intuition: the Dirichlet Energy

References

Theorem (Spectral Upper Bound)

P as before, $\varepsilon > 0$:

$$t_{mix}(\varepsilon) \le \frac{1}{1 - \lambda_*} \log \frac{1}{\varepsilon \pi_{\min}}$$

Proof.

A bit more technical, uses the diagonalization of P.

Preliminaries

Spectral Rep. Chains

Examples

Intuition: the Dirichlet Energy

$$\left(\frac{1}{1-\lambda_*}-1\right)\log\frac{1}{2\varepsilon} \leq t_{\mathsf{mix}}(\varepsilon) \leq \frac{1}{1-\lambda_*}\log\frac{1}{\varepsilon\pi_{\min}}$$

Preliminaries

Spectral Rep. Chains

Examples

Intuition: the Dirichlet Energy

References

$$\left(\frac{1}{1-\lambda_*}-1\right)\log\frac{1}{2\varepsilon} \leq t_{\mathsf{mix}}(\varepsilon) \leq \frac{1}{1-\lambda_*}\log\frac{1}{\varepsilon\pi_{\min}}$$

• For a fixed chain, these bounds are quite tight...

Preliminaries

Spectral Rep. Chains

Examples

Intuition: the Dirichlet Energy

$$\left(\frac{1}{1-\lambda_*}-1\right)\log\frac{1}{2\varepsilon} \leq t_{\mathsf{mix}}(\varepsilon) \leq \frac{1}{1-\lambda_*}\log\frac{1}{\varepsilon\pi_{\min}}$$

- For a fixed chain, these bounds are quite tight...
- But common to have $|\mathcal{X}| = n$ and $n \to \infty$.

Preliminaries

Spectral Rep. Chains

Examples

Intuition: the Dirichlet Energy

$$\left(\frac{1}{1-\lambda_*}-1\right)\log\frac{1}{2\varepsilon} \leq t_{\mathsf{mix}}(\varepsilon) \leq \frac{1}{1-\lambda_*}\log\frac{1}{\varepsilon\pi_{\min}}$$

- For a fixed chain, these bounds are quite tight...
- But common to have $|\mathcal{X}| = n$ and $n \to \infty$. Here, you pay a price for the $\log \frac{1}{\pi_{\min}}$.

Remarks

Spectral Theory of Finite Markov Chains

Austin Eide

Preliminaries

Spectral Rep. Chains

Examples

Intuition: the Dirichlet Energy

$$\left(\frac{1}{1-\lambda_*}-1\right)\log\frac{1}{2\varepsilon} \leq t_{\mathsf{mix}}(\varepsilon) \leq \frac{1}{1-\lambda_*}\log\frac{1}{\varepsilon\pi_{\min}}$$

- For a fixed chain, these bounds are quite tight...
- But common to have $|\mathcal{X}|=n$ and $n\to\infty$. Here, you pay a price for the $\log\frac{1}{\pi_{\min}}$.
- In many chains like this, a *cutoff phenomenon* is observed: as $n \to \infty$, d(t) approaches a step function which jumps from 1 (completely unmixed) to 0 (completely mixed) at a critical threshold $t_* = t_*(n)$.

The Cycle

Spectral Theory of Finite Markov Chains

Austin Eide

Preliminaries

Spectral Rep.

Chains Examples

Intuition: the Dirichlet Energy

References

Random walk on the (odd) n-cycle has eigenvalues

$$\left\{\cos\frac{2\pi j}{n}\right\}_{j=0}^{\frac{n-1}{2}}.$$

The Cycle

Spectral Theory of Finite Markov Chains

Austin Eide

Preliminaries

Spectral Rep.

Examples

Intuition: the Dirichlet Energy

References

Random walk on the (odd) n-cycle has eigenvalues

$$\left\{\cos\frac{2\pi j}{n}\right\}_{j=0}^{\frac{n-1}{2}}$$
. So $\lambda_* = \cos\frac{2\pi}{n} = 1 - \frac{2\pi^2}{n^2} + O(n^{-4})$.

The Cycle

Spectral Theory of Finite Markov Chains

Austin Eide

Preliminaries

Spectral Rep.

Examples

Intuition: the Dirichlet Energy

References

Random walk on the (odd) n-cycle has eigenvalues

$$\left\{\cos\frac{2\pi j}{n}\right\}_{j=0}^{\frac{n-1}{2}}$$
. So $\lambda_* = \cos\frac{2\pi}{n} = 1 - \frac{2\pi^2}{n^2} + O(n^{-4})$.

Since stationary is uniform, our bounds give

$$\frac{\pi^2 n^2}{2} \log \frac{1}{2\varepsilon} \lesssim t_{\mathsf{mix}}(\varepsilon) \lesssim \frac{\pi^2 n^2}{2} \log \frac{n}{\varepsilon}$$

Card Shuffling

Spectral Theory of Finite Markov Chains

Austin Eide

Preliminaries

Spectral Rep. Chains

Examples

Intuition: the Dirichlet Energy

References

Think of S_n as set of orderings of an n-card deck, laid side-by-side on a table.

Card Shuffling

Spectral Theory of Finite Markov Chains

Austin Eide

Preliminaries

Spectral Rep.

Chains

Examples

Intuition: the Dirichlet Energy

References

Think of S_n as set of orderings of an n-card deck, laid side-by-side on a table.

Consider the Markov chain on S_n obtained by iterating the following rule: pick a random pair of cards and transpose them.

Card Shuffling

Spectral Theory of Finite Markov Chains

Austin Eide

Preliminaries

Spectral Rep.

Chains

Lxamples

Intuition: the Dirichlet Energy

References

Think of S_n as set of orderings of an n-card deck, laid side-by-side on a table.

Consider the Markov chain on S_n obtained by iterating the following rule: pick a random pair of cards and transpose them.

Theorem (Diaconis & Shashashani '81)

For this chain, for any $\varepsilon > 0$

$$t_{mix}(\varepsilon) \sim \frac{1}{2} n \log n$$

(independent of ε).

Spectral Theory of Finite Markov Chains

Austin Eide

Preliminaries

Spectral Rep.

Examples

Intuition: the Dirichlet Energy

References

Let P be reversible with respect to π .

Spectral Theory of Finite Markov Chains

Austin Eide

Preliminaries

Spectral Rep.

Chains Examples

Intuition: the Dirichlet

Energy References Let P be reversible with respect to π .

Spectral Theory of Finite Markov Chains

Austin Eide

Preliminaries

Spectral Rep.

Chains Examples

Intuition: the

Dirichlet Energy

References

Let P be reversible with respect to π .

$$\mathcal{E}(f) := \frac{1}{2} \sum_{x,y \in \mathcal{X}} [f(x) - f(y)]^2 \pi(x) P(x,y)$$

Spectral Theory of Finite Markov Chains

Austin Eide

Preliminaries

Spectral Rep.

Chains Examples

Examples

Intuition: the Dirichlet Energy

References

Let P be reversible with respect to π .

$$\mathcal{E}(f) := \frac{1}{2} \sum_{x,y \in \mathcal{X}} [f(x) - f(y)]^2 \pi(x) P(x,y) = \langle (I - P)f, f \rangle_{\pi}$$

Spectral Theory of Finite Markov Chains

Austin Eide

Preliminaries

Spectral Rep.

Chains Examples

Lxamples

Intuition: the Dirichlet Energy

References

Let P be reversible with respect to π .

$$\mathcal{E}(f) := \frac{1}{2} \sum_{x,y \in \mathcal{X}} [f(x) - f(y)]^2 \pi(x) P(x,y) = \langle (I - P)f, f \rangle_{\pi}$$

$$\text{s.t. } f\cdot \mathbf{1}=0.$$

Spectral Theory of Finite Markov Chains

Austin Eide

Preliminaries

Spectral Rep.

Chains Examples

Intuition: the Dirichlet Energy

References

Let P be reversible with respect to π .

Challenge: pick a function $f \in \{\pm 1\}^{|\mathcal{X}|}$ minimizing $\frac{\mathcal{E}(f)}{\|f\|_2^2}$, where

$$\mathcal{E}(f) := \frac{1}{2} \sum_{x,y \in \mathcal{X}} [f(x) - f(y)]^2 \pi(x) P(x,y) = \langle (I - P)f, f \rangle_{\pi}$$

$$\text{s.t. } f \cdot \mathbf{1} = 0.$$

If we identify P with it's edge weighted graph G_P , this is equivalent to finding a balanced labeling of the vertices of G_P with ± 1 minimizing the above.

The Dirichlet Energy

Spectral Theory of Finite Markov Chains

Austin Eide

Preliminaries

Spectral Rep.

Chains

Examples

Intuition: the Dirichlet Energy

References

Minimizing $\mathcal{E}(f)$ is analogous to the problem of minimizing

The Dirichlet Energy

Spectral Theory of Finite Markov Chains

Austin Eide

Preliminaries

Spectral Rep. Chains

Examples

Intuition: the Dirichlet Energy

References

Minimizing $\mathcal{E}(f)$ is analogous to the problem of minimizing

$$\int_{\Omega} \|\nabla u\|^2 \, dx$$

over $u:\Omega\subseteq\mathbb{R}^n\to\mathbb{R}$ s.t. some boundary conditions.

The Dirichlet Energy

Spectral Theory of Finite Markov Chains

Austin Eide

 ${\sf Preliminaries}$

Spectral Rep.

Chains Examples

Intuition: the

Dirichlet Energy

References

Minimizing $\mathcal{E}(f)$ is analogous to the problem of minimizing

$$\int_{\Omega} \|\nabla u\|^2 \, dx$$

over $u:\Omega\subseteq\mathbb{R}^n\to\mathbb{R}$ s.t. some boundary conditions.

To solve the continuous version, one solves Laplace's Equation $\Delta u=0. \label{eq:deltau}$

The (Discrete) Dirichlet Energy

Spectral Theory of Finite Markov Chains

Austin Eide

Preliminaries

Spectral Rep.

Chains

Examples

Intuition: the Dirichlet Energy

References

We can relax our combinatorial problem to minimizing $\frac{\mathcal{E}(f)}{\|f\|_2^2}$ over any $f \in \mathbb{R}^{|\mathcal{X}|}$ s.t. $\langle f, \mathbf{1} \rangle_\pi = 0$ (and $f \neq 0$).

The (Discrete) Dirichlet Energy

Spectral Theory of Finite Markov Chains

Austin Eide

Preliminaries

Spectral Rep.

Chains Examples

Examples

Intuition: the Dirichlet Energy

References

We can relax our combinatorial problem to minimizing $\frac{\mathcal{E}(f)}{\|f\|_2^2}$ over any $f \in \mathbb{R}^{|\mathcal{X}|}$ s.t. $\langle f, \mathbf{1} \rangle_{\pi} = 0$ (and $f \neq 0$).

Theorem

Let P have eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_{|\mathcal{X}|}$ with eigenvectors $f_1, f_2, \ldots, f_{|\mathcal{X}|}$. The above optimization problem is solved by taking $f = 1 - f_2$, and thus has minimum value $\gamma = 1 - \lambda_2$.

References

Spectral Theory of Finite Markov Chains

Austin Eide

Preliminaries

Spectral Rep. Chains

Examples

Intuition: the Dirichlet Energy

References

Markov Chains and Mixing Times. Levin, D., and Peres, Y.