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A Markov chain on state space X is a sequence of X-valued
opectral Rep. rv.'s (Xo, X1,...) satisfying the Markov property:

Examples

P(Xiy1 =y|(Xs, ..., Xo)) = P(Xe1 = y|X¢ = z) =: P(,y)
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References A chain is thus entirely described by an initial distribution
1o € RI*! for X and a |X| x |X| row-stochastic matrix P

which stores transition probabilities.
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The transition matrix

If today's distribution (i.e., the distribution on X}) is u;, then
tomorrow's distribution is pi;11 = g P.
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If today's distribution (i.e., the distribution on X}) is u;, then

G tomorrow's distribution is pi;11 = g P.
ains

Examples

e Given the initial distribution 1, inductively we have p; = o P?.
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el Note: almost always, we'll think of p as a point mass on
some state x € X.
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Irreducibility & Aperiodicity

For z,y € X and t > 0, P!(x,y) is the probability of traveling
from x to y in t steps.
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Irreducibility & Aperiodicity

For z,y € X and t > 0, P!(x,y) is the probability of traveling
from x to y in t steps.

Definition (1. & A.)

A chain is irreducible if ¥ pairs x,y € X, 3 integer t with
Pt(x,y) > 0.
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Irreducibility & Aperiodicity

from x to y in t steps.

Definition (1. & A.)

A chain is irreducible if ¥ pairs x,y € X, 3 integer t with
Pt(x,y) > 0.

A chain is aperiodic if

ged{t > 1: P'(x,z) >0} = 1.

For z,y € X and t > 0, P!(x,y) is the probability of traveling
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Irreducibility & Aperiodicity

For z,y € X and t > 0, P!(x,y) is the probability of traveling
from x to y in t steps.
Definition (1. & A.)

A chain is irreducible if ¥ pairs x,y € X, 3 integer t with
Pt(x,y) > 0.

A chain is aperiodic if
ged{t > 1: P'(x,z) >0} = 1.

(For example, a “bipartite” chain is periodic, since then the
above quantity is 2.)
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Perron-Frobenius

If P is irreducible and aperiodic, then 3! distribution w such
that mP = 7, and moreover for any g we have jigP! — 7.
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Perron-Frobenius

If P is irreducible and aperiodic, then 3! distribution w such
that mP = 7, and moreover for any g we have jigP! — 7.

| + A = P! > 0 for all ¢ sufficiently large.
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Perron-Frobenius

If P is irreducible and aperiodic, then 3! distribution w such
that mP = 7, and moreover for any g we have jigP! — 7.

Proof.

| + A = P! > 0 for all ¢ sufficiently large.

Easy to show that o(P) < 1, and that 1 is an eigenvalue.
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Thus, by Perron-Frobenius (and a corollary thereof):
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Thus, by Perron-Frobenius (and a corollary thereof):

@ P has a unique, strictly positive left eigenvector 7 with
eigenvalue 1—the stationary distribution of P
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Thus, by Perron-Frobenius (and a corollary thereof):

@ P has a unique, strictly positive left eigenvector 7 with
eigenvalue 1—the stationary distribution of P

@ For any distribution pg on X, poP? — =
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Equivalent to || — V|4, = maxaca |u(A) — v(A4)].
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Mixing times

For z € X, let u, € RI*! be the point-mass distribution at .
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Mixing times

For z € X, let u, € RI*! be the point-mass distribution at .

Define d(t) := max, ||pte P* — 7|y, -
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tmix(€) is the (€)-mixing time of the chain.
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Proceed by P(z,y;) = % What do we get when all edges
have weight 17
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Reversibility is the core property relating general chains to
r.w.'s on graphs.
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{reversible chains P} <= {weighted graphs}

P+ Gp where V(Gp) = X,
edge weights m(z)P(z,y) = n(y)P(y, x)
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The spectral representation of the chain

Lemma

Let P be aperiodic, irreducible, and reversible with respect to
7. Then:

@ P is a self-adjoint operator on (RI*! (- -),).
@ 1 has multiplicity 1 as an eigenvalue of P, and the

corresponding (right) eigenspace is spanned by the all 1's
vector 1.

© -1 is not an eigenvalue of P.
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© -1 is not an eigenvalue of P.

Let A\x = max{|A| : A € spec(P), X # 1}.
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The spectral representation of the chain

Lemma
Let P be aperiodic, irreducible, and reversible with respect to
7. Then:

@ P is a self-adjoint operator on (RI*! (- -),).

@ 1 has multiplicity 1 as an eigenvalue of P, and the

corresponding (right) eigenspace is spanned by the all 1's
vector 1.

© -1 is not an eigenvalue of P.

Let A\. = max{|A| : A € spec(P), A # 1}. By the above and
fact o(P) =1, have 0 < A\, < 1.
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|EuzPi(f) - Eﬂ(f)| =
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By, pt(f) = En(£)l = | D (1P () — (1)) f (v)

yeX
< [|f 1l o 2d(2)

where E, () is expected value taken against distribution v.
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We have |E,, pi(f) —Ex(f)] < |Ifllo 2d(t). So any lower
bound on the LHS gives a lower bound on d(t).

If fis an eigenvector of P with eigenvalue \ # 1, we know two
things:




W\Ever=d Bounding mixing time below with A,

Lincoln

Spectral
Theory of
Finite Markov

Chains P roof

B Ve have [E,, p(f) — Er(f)] < || fllo, 2d(t). So any lower
bound on the LHS gives a lower bound on d(t).

Preliminaries

Spectral Rep.
Chains

Examples If fis an eigenvector of P with eigenvalue \ # 1, we know two

Intuition: the things:
Dirichlet

Energy 0 E.(f) =

References




W\Ever=d Bounding mixing time below with A,

Lincoln

Spectral
Theory of
Finite Markov

Chains P roof

B Ve have [E,, p(f) — Er(f)] < || fllo, 2d(t). So any lower
bound on the LHS gives a lower bound on d(t).

Preliminaries

Spectral Rep.
Chains

Examples If fis an eigenvector of P with eigenvalue \ # 1, we know two

Intuition: the things:
Dirichlet

Y (1) Ew(f) =) =

References




W\Ever=d Bounding mixing time below with A,

Lincoln

Spectral
Theory of
Finite Markov

Chains P roof

B Ve have [E,, p(f) — Er(f)] < || fllo, 2d(t). So any lower
bound on the LHS gives a lower bound on d(t).

Preliminaries

Spectral Rep.
Chains

Examples If fis an eigenvector of P with eigenvalue \ # 1, we know two

Intuition: the things:
Dirichlet

Q@ E.(f)=nf=nPf =

References




W\Ever=d Bounding mixing time below with A,

Lincoln

Spectral
Theory of
Finite Markov

Chains P roof

B Ve have [E,, p(f) — Er(f)] < || fllo, 2d(t). So any lower
bound on the LHS gives a lower bound on d(t).

Preliminaries

Spectral Rep.
Chains

Examples If fis an eigenvector of P with eigenvalue \ # 1, we know two

Intuition: the things:
Dirichlet

Energy Q E.(f)=nf=nPf=Xrf=

References




W\Ever=d Bounding mixing time below with A,

Lincoln

Spectral
Theory of
Finite Markov

Chains P roof

B Ve have [E,, p(f) — Er(f)] < || fllo, 2d(t). So any lower
bound on the LHS gives a lower bound on d(t).

Preliminaries

Spectral Rep.
Chains

Examples If fis an eigenvector of P with eigenvalue \ # 1, we know two

Intuition: the things:
Dirichlet

Energy QO E.(f)=nf=nPf=Mrf=XE:(f)

References




W\Ever=d Bounding mixing time below with A,

Lincoln

Spectral
Theory of
Finite Markov

Chains P roof

B Ve have [E,, p(f) — Er(f)] < || fllo, 2d(t). So any lower
bound on the LHS gives a lower bound on d(t).

Preliminaries

Spectral Rep.
Chains

Examples If fis an eigenvector of P with eigenvalue \ # 1, we know two

Intuition: the things:
Dirichlet

il Q E.(f) =nf=naPf=xrf=XE(f) = E(f)=0.

References




Bounding mixing time below with A,

Lincoln

Spectral
Theory of
Finite Markov

Chains P roof

B Ve have [E,, p(f) — Er(f)] < || fllo, 2d(t). So any lower
bound on the LHS gives a lower bound on d(t).

Preliminaries

Spectral Rep.
Chains

Examples If fis an eigenvector of P with eigenvalue \ # 1, we know two

Intuition: the things:
Dirichlet

- © Er(f) = nf = nPf = Mnf = Ex(f) = Ea(f) =0.
N o, () -




Bounding mixing time below with A,

Lincoln

Spectral
Theory of
Finite Markov

Chains P roof

B Ve have [E,, p(f) — Er(f)] < || fllo, 2d(t). So any lower
bound on the LHS gives a lower bound on d(t).

Preliminaries

Spectral Rep.
Chains

Examples If fis an eigenvector of P with eigenvalue \ # 1, we know two

Intuition: the things:
Dirichlet

- Q E(f) = nf = nPf = Anf = XBy(f) = Ex(f) =0.
eferences ) EMth (f) — Mxptf —




Bounding mixing time below with A,

Lincoln

Spectral
Theory of
Finite Markov

Chains P roof

B Ve have [E,, p(f) — Er(f)] < || fllo, 2d(t). So any lower
bound on the LHS gives a lower bound on d(t).

Preliminaries

Spectral Rep.
Chains

Examples If fis an eigenvector of P with eigenvalue \ # 1, we know two

Intuition: the things:
Dirichlet

- Q E(f) = nf = nPf = Anf = XBy(f) = Ex(f) =0.
eferences o EMth (f) _ Mxptf —_ /J'z)‘tf —




Bounding mixing time below with A,

Lincoln

Spectral
Theory of
Finite Markov

Chains P roof

B Ve have [E,, p(f) — Er(f)] < || fllo, 2d(t). So any lower
bound on the LHS gives a lower bound on d(t).

Preliminaries

Spectral Rep.
Chains

Examples If fis an eigenvector of P with eigenvalue \ # 1, we know two

Intuition: the things:
Dirichlet

- © E(f) = nf = nPf = Mnf = Ex(f) = Ea(f) =0.
B O E, (/) = 1Pl = pf = Mf(z).




Lincoln

Spectral
Theory of
Finite Markov
Chains

Austin Eide

Preliminaries

Spectral Rep.
Chains

Examples

Intuition: the
Dirichlet
Energy

References

Bounding mixing time below with A,

Proof.

We have |E,, pi(f) —Ex(f)] < |Ifllo 2d(t). So any lower
bound on the LHS gives a lower bound on d(t).

If fis an eigenvector of P with eigenvalue \ # 1, we know two
things:

Q E(f)=nf=nPf=Xrf=XE:(f) = Er(f)=0.
Q E, pi(f) = s P'f = p XN = X f(z).

So [A'f(z)] < ||f|l., 2d(t) for any z and eigenvalue X # 1.
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1
= 1) log %

This can be understood as a “first moment” bound, i.e
relying only on expectations. If variances are computable,
better bounds sometimes exist.



W\Ever=d Bounding mixing time above with A,

Lincoln

Spectral
Theory of
Finite Markov
Chains

Austin Eide

Theorem (Spectral Upper Bound)
P as before, € > 0:

Preliminaries

Spectral Rep.
Chains

Examples t . (5) <
mix =
Intuition: the 1— )\* ETMmin
Dirichlet
Energy

References



W\Ever=d Bounding mixing time above with A,

Lincoln

Spectral
Theory of
Finite Markov
Chains

Austin Eide

Theorem (Spectral Upper Bound)
P as before, € > 0:

Preliminaries

Spectral Rep.
Chains

Examples t . (5) <
mix =
Intuition: the 1— )\* ETMmin
Dirichlet
Energy

References

A bit more technical, uses the diagonalization of P. [




\Svetial Remarks

Lincoln

Spectral
Theory of
Finite Markov
Chains

1
Austin Eide — 1 log 27 S tmix<€)
9

Preliminaries

Spectral Rep.
Chains

Examples

Intuition: the
Dirichlet
Energy

References



\Svetial Remarks

Lincoln

Spectral
Theory of
Finite Markov
Chains

Austin Eide

Preliminaries

Spectral Rep.
Chains

Examples

@ For a fixed chain, these bounds are quite tight...

Intuition: the
Dirichlet
Energy

References



\Svetial Remarks

Lincoln

Spectral
Theory of
Finite Markov
Chains

Austin Eide

Preliminaries

Spectral Rep.
Chains

Examples

ntuition: the @ For a fixed chain, these bounds are quite tight...
Dirichlet

Energy e But common to have |X| =n and n — oco.

References



\Svetial Remarks

Lincoln

Spectral
Theory of
Finite Markov
Chains

Austin Eide

Preliminaries

Spectral Rep.
Chains

Examples

ntuition: the @ For a fixed chain, these bounds are quite tight...
Dirichlet

Enerzy @ But common to have |X| =n and n — co. Here, you pay
References a price for the log ——.
7Tm1n



\Svetial Remarks

Lincoln

Spectral
Theory of
Finite Markov
Chains

Austin Eide

Preliminaries

Spectral Rep.
Chains

Examples

@ For a fixed chain, these bounds are quite tight...

Intuition: the

Dirichlet
Energy @ But common to have |X| =n and n — co. Here, you pay

References a price for the log %
min

@ In many chains like this, a cutoff phenomenon is observed:
as n — oo, d(t) approaches a step function which jumps
from 1 (completely unmixed) to 0 (completely mixed) at a
critical threshold ¢, = t.(n).



Weverlel The Cycle

Lincoln

rieel] Random walk on the (odd) n-cycle has eigenvalues
eory o n—1

Finite Markov 2T1Y 5
Chains {COS 21 2

Austin Eide

Preliminaries

Spectral Rep.
Chains

Examples

Intuition: the
Dirichlet
Energy

References



Nebiaska [ pies Cycle

Lincoln

Spectral Random walk on the (odd) n- cycIe has elgenvalues
Theory of

—1
Finite Markov 2
Chains {cos 24 ; 20 So A =cosZE =1— 25 4 O(n4).

Austin Eide

Preliminaries

Spectral Rep.
Chains

Examples

Intuition: the
Dirichlet
Energy

References



Weverlel The Cycle

Lincoln

Spectral Random walk on the (odd) n- cycIe has elgenvalues
Theory of

—1
Finite Markov 2
i {cos 24 j 20 So A, =cos 2T =1— 222 4 O(n~%).

Austin Eide

Preliminaries

Spectral Rep.
Chains

Examples

Intuition: the
Dirichlet
Energy

References

Since stationary is uniform, our bounds give

m2n? 1 m2n? n

2




WSveel Card Shuffling

Lincoln

Spectral
Theory of

Bl Think of S, as set of orderings of an n-card deck, laid

Austin Eide side-by-side on a table.

Preliminaries

Spectral Rep.
Chains

Examples

Intuition: the
Dirichlet
Energy

References



WSveel Card Shuffling

Lincoln

Spectral
Theory of

Bl Think of S, as set of orderings of an n-card deck, laid

Austin Eide side-by-side on a table.

Preliminaries

S Consider the Markov chain on S, obtained by iterating the
Gietie following rule: pick a random pair of cards and transpose them.

Examples

Intuition: the
Dirichlet
Energy

References



WSveel Card Shuffling

Lincoln

Spectral
Theory of

el Think of S, as set of orderings of an n-card deck, laid

Austin Eide side-by-side on a table.

Preliminaries

S Consider the Markov chain on S, obtained by iterating the
et following rule: pick a random pair of cards and transpose them.

Examples

Intuition: the
Dirichlet
Energy

Theorem (Diaconis & Shashashani '81)
For this chain, for any € > 0

References

1
tmix(€) ~ S logn

(independent of ¢).




Wevevlel A combinatorial optimization problem

Lincoln

Spectral
Theory of
Finite Markov

Chains Let P be reversible with respect to .
Austin Eide

Preliminaries

Spectral Rep.
Chains

Examples

Intuition: the
Dirichlet
Energy

References



Wevevlel A combinatorial optimization problem

Lincoln

Spectral
Theory of
Finite Markov

Chains Let P be reversible with respect to .
Austin Eide

e(f)

, where
I1£112

Preliminaries Challenge: pick a function f € {£1}/*| minimizing

Spectral Rep.
Chains

Examples

Intuition: the
Dirichlet
Energy

References



Wevevlel A combinatorial optimization problem

Lincoln

Spectral
Theory of
Finite Markov

Chains Let P be reversible with respect to .
Austin Eide

e(f)

, where
I1£112

Preliminaries Challenge: pick a function f € {£1}/*| minimizing

Spectral Rep.
Chains 1

Sl :() = > /@) - f)Pr@)P@y)
e ryex

References



Wevevlel A combinatorial optimization problem

Lincoln

Spectral
Theory of
Finite Markov

Chains Let P be reversible with respect to .
Austin Eide

e(f)

, Where
I1£112

Preliminaries Challenge: pick a function f € {£1}/*| minimizing

Spectral Rep.
Chains 1

— E(f) =3 > [f(@) = f@)Pa()P(a,y) = (I = P)f. f)x
Dircher Hyex

References



Wevevlel A combinatorial optimization problem

Lincoln

Spectral
Theory of
Finite Markov

Chains Let P be reversible with respect to .
Austin Eide

e(f)

, where
I1£112

Preliminaries Challenge: pick a function f € {£1}/*| minimizing

Spectral Rep.
Chains 1

S— E(f) =3 > [f(@) = f@)Pa()P(a,y) = (I = P)f. f)x

Intuition: the
T,yeX
Dirichlet Ye

Energy

References s.t. f -1 = O




Wevevlel A combinatorial optimization problem

Lincoln

Spectral
Theory of
Finite Markov

Chains Let P be reversible with respect to .
Austin Eide

e(f)

, where
I1£112

Preliminaries Challenge: pick a function f € {£1}/*| minimizing

Spectral Rep.
Chains 1

S— E(f) =3 > [f(@) = f@)Pa()P(a,y) = (I = P)f. f)x

Intuition: the
T,yeX
Dirichlet Ye

Energy

References s.t. f -1 = O

If we identify P with it's edge weighted graph Gp, this is
equivalent to finding a balanced labeling of the vertices of Gp
with +1 minimizing the above.
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To solve the continuous version, one solves Laplace's Equation
Au = 0.
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