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Spectral Triples

Definition

A spectral triple for a C*-algebra A is a triple X = (A, H, D),
where H is a Hilbert space and D is a densely defined self-adjoint
(hence closed) operator on H with the following properties:
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A spectral triple for a C*-algebra A is a triple X = (A, H, D),
where H is a Hilbert space and D is a densely defined self-adjoint
(hence closed) operator on H with the following properties:

1. there is a (faithful) representation m : A — B(H),
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A spectral triple for a C*-algebra A is a triple X = (A, H, D),
where H is a Hilbert space and D is a densely defined self-adjoint
(hence closed) operator on H with the following properties:

1. there is a (faithful) representation m : A — B(H),
2. D has compact resolvent: (1 + D?)~1 € K(H),
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Spectral Triples

Definition

A spectral triple for a C*-algebra A is a triple X = (A, H, D),
where H is a Hilbert space and D is a densely defined self-adjoint
(hence closed) operator on H with the following properties:

1. there is a (faithful) representation m : A — B(H),
2. D has compact resolvent: (1 + D?)~1 € K(H),

3. the set C1(X) of elements a € A such that
m(a)dom(D) C dom(D) and [D,n(a)] is a bounded operator
on dom(D) is dense in A.
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Spectral Triples

Definition

A spectral triple for a C*-algebra A is a triple X = (A, H, D),
where H is a Hilbert space and D is a densely defined self-adjoint
(hence closed) operator on H with the following properties:

1. there is a (faithful) representation m : A — B(H),
2. D has compact resolvent: (1 + D?)~1 € K(H),

3. the set C1(X) of elements a € A such that
m(a)dom(D) C dom(D) and [D,n(a)] is a bounded operator
on dom(D) is dense in A.

Lemma
CY(X) with ||a||p := ||a|| + ||[D, w(a)]|| is a Banach x-algebra,
which is closed under holomorphic functional calculus in A.
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Example 1

(M, g) = compact Rimannian (spin©) manifold

A= C(M)

H = Hilbert space of [2-sections of the spinor bundle
D = Dirac operator
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Example 1

(M, g) = compact Rimannian (spin®) manifold

A= C(M)

H = Hilbert space of [2-sections of the spinor bundle

D = Dirac operator

(e.g., A= C(T),H = L?(T),D = 0 = —ud/db, [0, f] = —uf")
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Example 1

(M, g) = compact Rimannian (spin©) manifold

A= C(M)

H = Hilbert space of [2-sections of the spinor bundle
D = Dirac operator

(eg, A= C(T),H = LX(T),D = d = —ud/db,[d, f] = —if)
Theorem (Connes)

The geodesic distance between x,y € M can be calculated using
the above data:
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Example 1

(M, g) = compact Rimannian (spin®) manifold

A= C(M)

H = Hilbert space of [2-sections of the spinor bundle

D = Dirac operator

(e.g., A= C(T),H = L?(T),D = 0 = —ud/db, [0, f] = —uf")
Theorem (Connes)

The geodesic distance between x,y € M can be calculated using
the above data:

dg(x,y) = sup{|f(x) — f(y)|; f € A, [[[D,=(f)]]] < 1}.

[D, 7O = [Vlloo = [|fllLip- Hence, C}(X) = Lip(M).

In fact,
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" = discrete group
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Example 2

" = discrete group

¢:T — R* alength function, i.e. £(€) =0, £(y~1) = £(7),
(y172) < (1) + £(72) (for example, the word length associated
with a finite set of generators of a finitely generated group)
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" = discrete group

¢:T — R* alength function, i.e. £(€) =0, £(y~1) = £(7),
(y172) < (1) + £(72) (for example, the word length associated
with a finite set of generators of a finitely generated group)

A = left regular representation on £2(I') : (A(g)&)(t) = &(g™ 1)
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¢:T — R* alength function, i.e. £(€) =0, £(y~1) = £(7),
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with a finite set of generators of a finitely generated group)

A = left regular representation on £2(I') : (A(g)&)(t) = &(g™ 1)
C*(I') = C*(\()) € B(£3(T)), the reduced group C*-algebra
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Example 2

" = discrete group

¢:T — R* alength function, i.e. £(€) =0, £(y~1) = £(7),
(y172) < (1) + £(72) (for example, the word length associated
with a finite set of generators of a finitely generated group)

A = left regular representation on £2(I') : (A(g)&)(t) = &(g™ 1)
C*(I') = C*(\()) € B(£3(T)), the reduced group C*-algebra
M, = the multiplication operator (M,&)(t) = £(t)&(t) on ¢3(T)
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Example 2

" = discrete group

¢:T — R* alength function, i.e. £(€) =0, £(y~1) = £(7),
(y172) < (1) + £(72) (for example, the word length associated
with a finite set of generators of a finitely generated group)

A = left regular representation on £2(I') : (A(g)&)(t) = &(g™ 1)
C*(I') = C*(\()) € B(£3(T)), the reduced group C*-algebra
M, = the multiplication operator (M,&)(t) = £(t)&(t) on ¢3(T)
Proposition

If limg_o0 £(g) = 0o then (C}(T),¢3(T), My) is a spectral triple.
Moreover, ||[[Mg, \(g)]l| = ¢(g), for all g € T.
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Connes metric

» A spectral triple (A, H, D) defines the following Connes
pseudo-metric on the state space S(A) by setting
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Connes metric

» A spectral triple (A, H, D) defines the following Connes
pseudo-metric on the state space S(A) by setting

dp (¢, ) := sup{|¢(a) —¢(a)| : I[D, x(a)]l| < 1}

Kamran Reihani Spectral triples for equicontinuous actions



Connes metric

» A spectral triple (A, H, D) defines the following Connes
pseudo-metric on the state space S(A) by setting

dp (¢, ) := sup{|¢(a) —¢(a)| : I[D, x(a)]l| < 1}

» Define the following objects
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Connes metric

» A spectral triple (A, H, D) defines the following Connes
pseudo-metric on the state space S(A) by setting

dp(¢, ) = sup{|¢(a) — ¥(a)| - [I[D, m(a)]]| < 1}
» Define the following objects
(i) the metric commutant; A == {a€ A:[D,n(a)] =0}
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Connes metric

» A spectral triple (A, H, D) defines the following Connes
pseudo-metric on the state space S(A) by setting

dp(¢, ) = sup{|¢(a) — ¥(a)| - [I[D, m(a)]]| < 1}
» Define the following objects
(i) the metric commutant; A == {a€ A:[D,n(a)] =0}

(ii) the Lipschitz ball; B,;,(X) :={a€ A:|[D,n(a)]]| <1}
(always closed in norm)
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Connes metric

» A spectral triple (A, H, D) defines the following Connes
pseudo-metric on the state space S(A) by setting

dp(¢, ) := sup{|¢(a) — ¥(a)| - [[[D, ()]l <1}
» Define the following objects
(i) the metric commutant; A == {a€ A:[D,n(a)] =0}
(ii) the Lipschitz ball; B,;,(X) :={a€ A:||[D,n(a)]|] <1}
(always closed in norm)

Fact: If B, has norm bounded image in A/A}y, then (S(A),dp) is
a metric space with finite diameter.
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Connes metric

» A spectral triple (A, H, D) defines the following Connes
pseudo-metric on the state space S(A) by setting

dp(¢, ) = sup{|¢(a) — ¥(a)| - [I[D, m(a)]]| < 1}
» Define the following objects
(i) the metric commutant; A == {a€ A:[D,n(a)] =0}

(ii) the Lipschitz ball; B,;,(X) :={a€ A:|[D,n(a)]]| <1}
(always closed in norm)

Fact: If B, has norm bounded image in A/A}y, then (S(A),dp) is
a metric space with finite diameter.

Result (Rennie-Varilly)

Let (A, H, D) be a spectral triple such that A is a separable unital
C*-algebra and 1, acts as the identity operator on H (i.e. the

representation is non-degenerate). Assume that the metric
commutant A, = Cla. Then dp is a metric on S(A).
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Compatibility of Connes metric with w*-topology
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Compatibility of Connes metric with w*-topology

If Ais a unital C*-algebra then the state space S(A) is a closed
(and convex) subset of the unit ball of A* in the w*-topology
o(A*, A), so S(A) is w*-compact.

Kamran Reihani Spectral triples for equicontinuous actions



Compatibility of Connes metric with w*-topology

If Ais a unital C*-algebra then the state space S(A) is a closed
(and convex) subset of the unit ball of A* in the w*-topology
o(A*, A), so S(A) is w*-compact.

Result (Pavlovich-Rieffel-Ozawa)

Let X = (A, H, D) be a spectral triple with A unital. Assume that
the metric commutatnt A, is trivial (= C1).
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Compatibility of Connes metric with w*-topology

If Ais a unital C*-algebra then the state space S(A) is a closed
(and convex) subset of the unit ball of A* in the w*-topology
o(A*, A), so S(A) is w*-compact.

Result (Pavlovich-Rieffel-Ozawa)

Let X = (A, H, D) be a spectral triple with A unital. Assume that
the metric commutatnt A, is trivial (= C1). T.F.A.E:

(i) dp induces the w*-topology on S(A),
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If Ais a unital C*-algebra then the state space S(A) is a closed
(and convex) subset of the unit ball of A* in the w*-topology
o(A*, A), so S(A) is w*-compact.

Result (Pavlovich-Rieffel-Ozawa)

Let X = (A, H, D) be a spectral triple with A unital. Assume that
the metric commutatnt A, is trivial (= C1). T.F.A.E:

(i) dp induces the w*-topology on S(A),

(i) Byp(X) :={ac A:||[D,nm(a)]|| <1} has precompact image
in AJ AL,
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Compatibility of Connes metric with w*-topology

If Ais a unital C*-algebra then the state space S(A) is a closed
(and convex) subset of the unit ball of A* in the w*-topology
o(A*, A), so S(A) is w*-compact.

Result (Pavlovich-Rieffel-Ozawa)

Let X = (A, H, D) be a spectral triple with A unital. Assume that
the metric commutatnt A, is trivial (= C1). T.F.A.E:

(i) dp induces the w*-topology on S(A),

(i) Byp(X) :={ac A:||[D,nm(a)]|| <1} has precompact image
in AJ AL,

(iii) ker(¢) N Bjp(X) is precompact in A for some ¢ € S(A)
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Compatibility of Connes metric with w*-topology

If Ais a unital C*-algebra then the state space S(A) is a closed
(and convex) subset of the unit ball of A* in the w*-topology
o(A*, A), so S(A) is w*-compact.

Result (Pavlovich-Rieffel-Ozawa)
Let X = (A, H, D) be a spectral triple with A unital. Assume that
the metric commutatnt A, is trivial (= C1). T.F.A.E:

(i) dp induces the w*-topology on S(A),

(i) Byp(X) :={ac A:||[D,nm(a)]|| <1} has precompact image

in AJ Ay,

(iii) ker(¢) N Bjp(X) is precompact in A for some ¢ € S(A)
Caution: The conditions (ii) or (iii) are often very difficult to

check! Very different approaches were taken to treat the group
C*-algebras of Z" and hyperbolic groups.
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Spectral metric spaces

Definition
A (compact) spectral metric space is a spectral triple
X = (A, H, D) for a unital separable C*-algebra A such that
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Spectral metric spaces

Definition
A (compact) spectral metric space is a spectral triple
X = (A, H, D) for a unital separable C*-algebra A such that

(i) the representation of A on H is non-degenerate (unital),
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Spectral metric spaces

Definition
A (compact) spectral metric space is a spectral triple
X = (A, H, D) for a unital separable C*-algebra A such that

(i) the representation of A on H is non-degenerate (unital),

(i) Ay, = {a € A; [D,a] = 0} is trivial (= C1),
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Spectral metric spaces

Definition
A (compact) spectral metric space is a spectral triple
X = (A, H, D) for a unital separable C*-algebra A such that

(i) the representation of A on H is non-degenerate (unital),
(i) A, = {a € A; [D,a] =0} is trivial (= C1),

(iii) the Lipschitz Ball B,,,(X) has precompact image in the
normed space A/A],.
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spectral triples for crossed products

Assume X = (A, H, D) is a spectral triple. we will try to build a
spectral triple for A X, Z:
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spectral triples for crossed products

Assume X = (A, H, D) is a spectral triple. we will try to build a
spectral triple for A X, Z:

Hilbert Space: K = H® (*(Z) ® C? = ((Z,H @ H)
feK=f=(f)ez fo=(fop,fo-), fox €H
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spectral triples for crossed products

Assume X = (A, H, D) is a spectral triple. we will try to build a
spectral triple for A X, Z:

Hilbert Space: K = H® (*(Z) ® C? = ((Z,H @ H)
feK=f=(f)ez fo=(fop,fo-), fox €H

Representation: The left regular representation @ of A X Z:
(7(a)f), =moa "(a)(fa) (of), = fo-1

i unitary on K and (@, &) is a covariant pair = @ extends to
AXoZ by (3>, anu™) =", #(an)d"
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spectral triples for crossed products

Assume X = (A, H, D) is a spectral triple. we will try to build a
spectral triple for A X, Z:

Hilbert Space: K = H® (*(Z) ® C? = ((Z,H @ H)
feK=f=(f)ez fo=(fop,fo-), fox €H

Representation: The left regular representation @ of A X Z:
(#(a)f), = moa™"(a)(fy) (0f), = fo1

i unitary on K and (@, &) is a covariant pair = @ extends to
AXoZ by (3>, anu™) =", #(an)d"

Dirac Operator: Kasparov's external product of D and 0

Df) — 0 D —n £
( )n [D+zn 0
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spectral triples for crossed products

Assume X = (A, H, D) is a spectral triple. we will try to build a
spectral triple for A X, Z:

Hilbert Space: K = H® (*(Z) ® C? = ((Z,H @ H)
feK=f=(f)ez fo=(fop,fo-), fox €H

Representation: The left regular representation @ of A X Z:
(#(a)f), = moa™"(a)(fy) (0f), = fo1

i unitary on K and (@, &) is a covariant pair = @ extends to
AXoZ by (3>, anu™) =", #(an)d"

Dirac Operator: Kasparov's external product of D and 0

Df) — 0 D —n £
( )n [D+zn 0

D is (essentially) self-dajoint with compact resolvent
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Commutators with D:

() = [7 ] o
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Commutators with D:
A A 0 —
([D’ u]f)n - [ 1 0 ] o1

(1D.#(a))F) = [ L q } [D, 700 "(a)]fs
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Commutators with D:
A A 0 —
([D’ u]f)n - [ 1 0 ] o1

(1D.#(a))F) = [(1’ H [D, 700 "(a)]fs

Definition
Let X = (A, H, D) be a spectral triple. We say that the
automorphism o € Aut(A) is equicontinuous if
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Commutators with D:
A A 0 —
([D’ u]f)n - [ 1 0 ] o1

(1D.#(a))F) = [(1’ H [D, 700 "(a)]fs

Definition
Let X = (A, H, D) be a spectral triple. We say that the
automorphism o € Aut(A) is equicontinuous if

> acCYX) & a(a) € CHX)
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Commutators with D:
A A 0 —
([D’ u]f)n - [ 1 0 ] o1

(1D.#(a))F) = [(1’ H [D, 700 "(a)]fs

Definition
Let X = (A, H, D) be a spectral triple. We say that the
automorphism o € Aut(A) is equicontinuous if

> acCYX) & a(a) € CHX)

> sup,cz |[D, 7o a™"(a)|| < oo for all a € C1(X).
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Commutators with D:
A A 0 —
([D’ u]f)n - [ 1 0 ] o1

(1D.#(a))F) = [(1’ H [D, 700 "(a)]fs

Definition
Let X = (A, H, D) be a spectral triple. We say that the
automorphism o € Aut(A) is equicontinuous if

> acCYX) & a(a) € CHX)

> sup,cz |[D, 7o a™"(a)|| < oo for all a € C1(X).

Theorem (Bellissard-Marcolli-R)

(A Z,K, 5) is a spectral triple. Moreover, if (A, H,D) is a
spectral metric space and « is an equicontinuous automorphism of
A, then (A x4 Z,K, D) is a spectral metric space.
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Some examples ©

» Crossed product of an isometric diffeomorphism on a compact
Riemannian (spin©) manifold, e.g., the rotation algebra
(motivating for our construction), and more generally:
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Some examples ©

» Crossed product of an isometric diffeomorphism on a compact
Riemannian (spin©) manifold, e.g., the rotation algebra
(motivating for our construction), and more generally:

» NC or classical tori: by iteration of the crossed products, one
can exactly recover the so called canonical spectral triples for
the NC or classical tori
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Some examples ©

» Crossed product of an isometric diffeomorphism on a compact
Riemannian (spin©) manifold, e.g., the rotation algebra
(motivating for our construction), and more generally:

» NC or classical tori: by iteration of the crossed products, one
can exactly recover the so called canonical spectral triples for
the NC or classical tori

» Crossed product C(M) x Z of a diffeomorphism ¢ on a
compact Riemannian (spin€) manifold (M, g), with the
following condition

( d (¢k(P),¢k(P'))> e

sup
keZ

sup
PP’ €M dg (P, P")
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Some examples ©

» Crossed product of an isometric diffeomorphism on a compact
Riemannian (spin©) manifold, e.g., the rotation algebra
(motivating for our construction), and more generally:

» NC or classical tori: by iteration of the crossed products, one
can exactly recover the so called canonical spectral triples for
the NC or classical tori

» Crossed product C(M) x Z of a diffeomorphism ¢ on a
compact Riemannian (spin€) manifold (M, g), with the
following condition

dg (¢*(P), o*(P"))
2:2 (P;és/lvjfpe/w dg(P, P') =

» Bunce-Deddens algebras: odometer action on the Cantor set
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