Spectral triples for equicontinuous actions and metrics on state spaces

Kamran Reihani

University of Kansas

Special Session on Recent Progress in Operator Algebras

AMS Central Section Meeting, University of Nebraska-Lincoln

October 14

Joint work with Jean Bellissard and Matilde Marcolli "Dynamical systems on spectral metric spaces"

Definition

A spectral triple for a C^* -algebra A is a triple X = (A, H, D), where H is a Hilbert space and D is a densely defined self-adjoint (hence closed) operator on H with the following properties:

Definition

A spectral triple for a C^* -algebra A is a triple X = (A, H, D), where H is a Hilbert space and D is a densely defined self-adjoint (hence closed) operator on H with the following properties:

1. there is a (faithful) representation $\pi: A \to \mathcal{B}(H)$,

Definition

A spectral triple for a C^* -algebra A is a triple X = (A, H, D), where H is a Hilbert space and D is a densely defined self-adjoint (hence closed) operator on H with the following properties:

- 1. there is a (faithful) representation $\pi: A \to \mathcal{B}(H)$,
- 2. D has compact resolvent: $(1+D^2)^{-1} \in \mathcal{K}(H)$,

Definition

A spectral triple for a C^* -algebra A is a triple X = (A, H, D), where H is a Hilbert space and D is a densely defined self-adjoint (hence closed) operator on H with the following properties:

- 1. there is a (faithful) representation $\pi: A \to \mathcal{B}(H)$,
- 2. D has compact resolvent: $(1+D^2)^{-1} \in \mathcal{K}(H)$,
- 3. the set $C^1(X)$ of elements $a \in A$ such that $\pi(a) \operatorname{dom}(D) \subseteq \operatorname{dom}(D)$ and $[D, \pi(a)]$ is a bounded operator on $\operatorname{dom}(D)$ is dense in A.

Definition

A spectral triple for a C^* -algebra A is a triple X = (A, H, D), where H is a Hilbert space and D is a densely defined self-adjoint (hence closed) operator on H with the following properties:

- 1. there is a (faithful) representation $\pi: A \to \mathcal{B}(H)$,
- 2. D has compact resolvent: $(1+D^2)^{-1} \in \mathcal{K}(H)$,
- 3. the set $C^1(X)$ of elements $a \in A$ such that $\pi(a) \operatorname{dom}(D) \subseteq \operatorname{dom}(D)$ and $[D, \pi(a)]$ is a bounded operator on $\operatorname{dom}(D)$ is dense in A.

Lemma

 $C^1(X)$ with $||a||_D := ||a|| + ||[D, \pi(a)]||$ is a Banach *-algebra, which is closed under holomorphic functional calculus in A.


```
(M,g)= compact Rimannian (spin<sup>c</sup>) manifold A=C(M) H= Hilbert space of L^2-sections of the spinor bundle D= Dirac operator
```

$$(M,g)=$$
 compact Rimannian (spin^c) manifold $A=C(M)$ $H=$ Hilbert space of L^2 -sections of the spinor bundle $D=$ Dirac operator (e.g., $A=C(\mathbb{T}), H=L^2(\mathbb{T}), D=\partial=-\iota d/d\theta, [\partial,f]=-\iota f'$)

$$(M,g)=$$
 compact Rimannian (spin c) manifold $A=C(M)$ $H=$ Hilbert space of L^2 -sections of the spinor bundle $D=$ Dirac operator (e.g., $A=C(\mathbb{T}), H=L^2(\mathbb{T}), D=\partial=-\iota d/d\theta, [\partial,f]=-\iota f'$) Theorem (Connes)

The geodesic distance between $x, y \in M$ can be calculated using the above data:

$$(M,g) = \text{compact Rimannian (spin}^c) \text{ manifold}$$

$$A = C(M)$$

H = Hilbert space of L^2 -sections of the spinor bundle

D = Dirac operator

(e.g.,
$$A = C(\mathbb{T}), H = L^2(\mathbb{T}), D = \partial = -\iota d/d\theta, [\partial, f] = -\iota f'$$
)

Theorem (Connes)

The geodesic distance between $x, y \in M$ can be calculated using the above data:

$$d_g(x,y) = \sup\{|f(x) - f(y)|; f \in A, \|[D,\pi(f)]\| \le 1\}.$$

In fact,
$$||[D, \pi(f)]|| = ||\nabla f||_{\infty} = ||f||_{Lip}$$
. Hence, $C^1(X) = \operatorname{Lip}(M)$.

 $\Gamma = \mathsf{discrete} \; \mathsf{group}$

 $\Gamma = discrete group$

 $\ell: \Gamma \to \mathbb{R}^+$ a length function, i.e. $\ell(e) = 0$, $\ell(\gamma^{-1}) = \ell(\gamma)$, $\ell(\gamma_1 \gamma_2) \leq \ell(\gamma_1) + \ell(\gamma_2)$ (for example, the word length associated with a finite set of generators of a finitely generated group)

 $\Gamma = discrete group$

 $\ell:\Gamma\to\mathbb{R}^+$ a length function, i.e. $\ell(e)=0$, $\ell(\gamma^{-1})=\ell(\gamma)$, $\ell(\gamma_1\gamma_2)\leq\ell(\gamma_1)+\ell(\gamma_2)$ (for example, the word length associated with a finite set of generators of a finitely generated group)

 $\lambda = {\sf left}$ regular representation on $\ell^2(\Gamma)$: $(\lambda(g)\xi)(t) = \xi(g^{-1}t)$

 $\Gamma = discrete group$

 $\ell:\Gamma\to\mathbb{R}^+$ a length function, i.e. $\ell(e)=0$, $\ell(\gamma^{-1})=\ell(\gamma)$, $\ell(\gamma_1\gamma_2)\leq\ell(\gamma_1)+\ell(\gamma_2)$ (for example, the word length associated with a finite set of generators of a finitely generated group)

 $\lambda = {\sf left}$ regular representation on $\ell^2(\Gamma): (\lambda(g)\xi)(t) = \xi(g^{-1}t)$

 $C_r^*(\Gamma) = C^*(\lambda(\Gamma)) \subset B(\ell^2(\Gamma))$, the reduced group C^* -algebra

 $\Gamma = discrete group$

 $\ell:\Gamma\to\mathbb{R}^+$ a length function, i.e. $\ell(e)=0$, $\ell(\gamma^{-1})=\ell(\gamma)$, $\ell(\gamma_1\gamma_2)\leq\ell(\gamma_1)+\ell(\gamma_2)$ (for example, the word length associated with a finite set of generators of a finitely generated group)

$$\lambda = {\sf left}$$
 regular representation on $\ell^2(\Gamma) : (\lambda(g)\xi)(t) = \xi(g^{-1}t)$

$$C_r^*(\Gamma) = C^*(\lambda(\Gamma)) \subset B(\ell^2(\Gamma))$$
, the reduced group C^* -algebra

$$M_\ell =$$
 the multiplication operator $(M_\ell \xi)(t) = \ell(t) \xi(t)$ on $\ell^2(\Gamma)$

$\Gamma = discrete group$

 $\ell:\Gamma \to \mathbb{R}^+$ a length function, i.e. $\ell(e)=0$, $\ell(\gamma^{-1})=\ell(\gamma)$, $\ell(\gamma_1\gamma_2) \leq \ell(\gamma_1) + \ell(\gamma_2)$ (for example, the word length associated with a finite set of generators of a finitely generated group)

$$\lambda = {\sf left}$$
 regular representation on $\ell^2(\Gamma): (\lambda(g)\xi)(t) = \xi(g^{-1}t)$

$$C_r^*(\Gamma) = C^*(\lambda(\Gamma)) \subset B(\ell^2(\Gamma))$$
, the reduced group C^* -algebra

$$M_\ell =$$
 the multiplication operator $(M_\ell \xi)(t) = \ell(t) \xi(t)$ on $\ell^2(\Gamma)$

Proposition

If $\lim_{g\to\infty}\ell(g)=\infty$ then $(C_r^*(\Gamma),\ell^2(\Gamma),M_\ell)$ is a spectral triple. Moreover, $\|[M_\ell,\lambda(g)]\|=\ell(g)$, for all $g\in\Gamma$.

A spectral triple (A, H, D) defines the following **Connes pseudo-metric** on the state space S(A) by setting

A spectral triple (A, H, D) defines the following **Connes pseudo-metric** on the state space S(A) by setting

$$d_D(\phi, \psi) := \sup\{|\phi(a) - \psi(a)| : \|[D, \pi(a)]\| \le 1\}$$

A spectral triple (A, H, D) defines the following **Connes pseudo-metric** on the state space S(A) by setting

$$d_D(\phi, \psi) := \sup\{|\phi(a) - \psi(a)| : \|[D, \pi(a)]\| \le 1\}$$

Define the following objects

A spectral triple (A, H, D) defines the following **Connes pseudo-metric** on the state space S(A) by setting

$$d_D(\phi, \psi) := \sup\{|\phi(a) - \psi(a)| : \|[D, \pi(a)]\| \le 1\}$$

- ▶ Define the following objects
 - (i) the metric commutant; $A'_D := \{a \in A : [D, \pi(a)] = 0\}$

A spectral triple (A, H, D) defines the following **Connes pseudo-metric** on the state space S(A) by setting

$$d_D(\phi, \psi) := \sup\{|\phi(a) - \psi(a)| : \|[D, \pi(a)]\| \le 1\}$$

- Define the following objects
 - (i) the metric commutant; $A'_D := \{a \in A : [D, \pi(a)] = 0\}$
 - (ii) the Lipschitz ball; $B_{Lip}(X) := \{a \in A : ||[D, \pi(a)]|| \le 1\}$ (always closed in norm)

A spectral triple (A, H, D) defines the following **Connes pseudo-metric** on the state space S(A) by setting

$$d_D(\phi, \psi) := \sup\{|\phi(a) - \psi(a)| : \|[D, \pi(a)]\| \le 1\}$$

- Define the following objects
 - (i) the metric commutant; $A'_D := \{a \in A : [D, \pi(a)] = 0\}$
 - (ii) the Lipschitz ball; $B_{Lip}(X) := \{a \in A : ||[D, \pi(a)]|| \le 1\}$ (always closed in norm)

Fact: If B_{Lip} has norm bounded image in A/A'_D , then $(S(A), d_D)$ is a metric space with finite diameter.

A spectral triple (A, H, D) defines the following **Connes pseudo-metric** on the state space S(A) by setting

$$d_D(\phi, \psi) := \sup\{|\phi(a) - \psi(a)| : \|[D, \pi(a)]\| \le 1\}$$

- Define the following objects
 - (i) the metric commutant; $A'_D := \{a \in A : [D, \pi(a)] = 0\}$
 - (ii) the Lipschitz ball; $B_{Lip}(X) := \{a \in A : ||[D, \pi(a)]|| \le 1\}$ (always closed in norm)

Fact: If B_{Lip} has norm bounded image in A/A'_D , then $(S(A), d_D)$ is a metric space with finite diameter.

Result (Rennie-Varilly)

Let (A, H, D) be a spectral triple such that A is a separable unital C^* -algebra and 1_A acts as the identity operator on H (i.e. the representation is non-degenerate). Assume that the metric commutant $A'_D = \mathbb{C}1_A$. Then d_D is a metric on S(A).

If A is a **unital** C^* -algebra then the state space S(A) is a closed (and convex) subset of the unit ball of A^* in the w^* -topology $\sigma(A^*, A)$, so S(A) is w^* -compact.

If A is a **unital** C^* -algebra then the state space S(A) is a closed (and convex) subset of the unit ball of A^* in the w^* -topology $\sigma(A^*,A)$, so S(A) is w^* -compact.

Result (Pavlovich-Rieffel-Ozawa)

Let X = (A, H, D) be a spectral triple with A unital. Assume that the metric commutatot A'_D is trivial $(= \mathbb{C}1)$.

If A is a **unital** C^* -algebra then the state space S(A) is a closed (and convex) subset of the unit ball of A^* in the w^* -topology $\sigma(A^*,A)$, so S(A) is w^* -compact.

Result (Pavlovich-Rieffel-Ozawa)

Let X = (A, H, D) be a spectral triple with A unital. Assume that the metric commutatnt A'_D is trivial $(= \mathbb{C}1)$. T.F.A.E:

(i) d_D induces the w^* -topology on S(A),

If A is a **unital** C^* -algebra then the state space S(A) is a closed (and convex) subset of the unit ball of A^* in the w^* -topology $\sigma(A^*,A)$, so S(A) is w^* -compact.

Result (Pavlovich-Rieffel-Ozawa)

Let X = (A, H, D) be a spectral triple with A unital. Assume that the metric commutatnt A'_D is trivial $(= \mathbb{C}1)$. T.F.A.E:

- (i) d_D induces the w^* -topology on S(A),
- (ii) $B_{Lip}(X) := \{a \in A : ||[D, \pi(a)]|| \le 1\}$ has precompact image in A/A'_D ,

If A is a **unital** C^* -algebra then the state space S(A) is a closed (and convex) subset of the unit ball of A^* in the w^* -topology $\sigma(A^*,A)$, so S(A) is w^* -compact.

Result (Pavlovich-Rieffel-Ozawa)

Let X = (A, H, D) be a spectral triple with A unital. Assume that the metric commutatnt A'_D is trivial $(= \mathbb{C}1)$. T.F.A.E:

- (i) d_D induces the w^* -topology on S(A),
- (ii) $B_{Lip}(X) := \{ a \in A : ||[D, \pi(a)]|| \le 1 \}$ has precompact image in A/A'_D ,
- (iii) $ker(\phi) \cap B_{Lip}(X)$ is precompact in A for some $\phi \in S(A)$

If A is a **unital** C^* -algebra then the state space S(A) is a closed (and convex) subset of the unit ball of A^* in the w^* -topology $\sigma(A^*,A)$, so S(A) is w^* -compact.

Result (Pavlovich-Rieffel-Ozawa)

Let X = (A, H, D) be a spectral triple with A unital. Assume that the metric commutatnt A'_D is trivial $(= \mathbb{C}1)$. T.F.A.E:

- (i) d_D induces the w^* -topology on S(A),
- (ii) $B_{Lip}(X):=\{a\in A:\|[D,\pi(a)]\|\leq 1\}$ has precompact image in A/A'_D ,
- (iii) $ker(\phi) \cap B_{Lip}(X)$ is precompact in A for some $\phi \in S(A)$

Caution: The conditions (ii) or (iii) are often very difficult to check! Very different approaches were taken to treat the group C^* -algebras of \mathbb{Z}^n and hyperbolic groups.

Spectral metric spaces

Spectral metric spaces

Definition

A (compact) spectral metric space is a spectral triple X = (A, H, D) for a unital separable C^* -algebra A such that

Spectral metric spaces

Definition

A (compact) spectral metric space is a spectral triple X = (A, H, D) for a unital separable C^* -algebra A such that

(i) the representation of A on H is non-degenerate (unital),

Spectral metric spaces

Definition

A (compact) spectral metric space is a spectral triple X = (A, H, D) for a unital separable C^* -algebra A such that

(i) the representation of A on H is non-degenerate (unital),

(ii)
$$A'_D = \{ a \in A ; [D, a] = 0 \}$$
 is trivial $(= \mathbb{C}1)$,

Spectral metric spaces

Definition

A (compact) spectral metric space is a spectral triple X = (A, H, D) for a unital separable C^* -algebra A such that

(i) the representation of A on H is non-degenerate (unital),

(ii)
$$A'_D = \{a \in A; [D, a] = 0\}$$
 is trivial $(= \mathbb{C}1)$,

(iii) the Lipschitz Ball $B_{Lip}(X)$ has precompact image in the normed space A/A'_D .

Assume X = (A, H, D) is a spectral triple. we will try to build a spectral triple for $A \rtimes_{\alpha} \mathbb{Z}$:

Assume X = (A, H, D) is a spectral triple. we will try to build a spectral triple for $A \rtimes_{\alpha} \mathbb{Z}$:

Hilbert Space:
$$K = H \otimes \ell^2(\mathbb{Z}) \otimes \mathbb{C}^2 = \ell^2(\mathbb{Z}, H \oplus H)$$

 $f \in K \Rightarrow f = (f_n)_{n \in \mathbb{Z}}; f_n = (f_{n+}, f_{n-}), f_{n,\pm} \in H$

Assume X = (A, H, D) is a spectral triple. we will try to build a spectral triple for $A \rtimes_{\alpha} \mathbb{Z}$:

Hilbert Space:
$$K = H \otimes \ell^2(\mathbb{Z}) \otimes \mathbb{C}^2 = \ell^2(\mathbb{Z}, H \oplus H)$$

 $f \in K \Rightarrow f = (f_n)_{n \in \mathbb{Z}}; f_n = (f_{n+}, f_{n-}), f_{n,\pm} \in H$

Representation: The left regular representation $\hat{\pi}$ of $A \rtimes_{\alpha} \mathbb{Z}$:

$$(\hat{\pi}(a)f)_n = \pi \circ \alpha^{-n}(a)(f_n) \qquad (\hat{u}f)_n = f_{n-1}$$

 \hat{u} unitary on K and $(\hat{\pi}, \hat{u})$ is a covariant pair $\Rightarrow \hat{\pi}$ extends to $A \rtimes_{\alpha} \mathbb{Z}$ by $\hat{\pi}(\sum_{n} a_{n} u^{n}) = \sum_{n} \hat{\pi}(a_{n}) \hat{u}^{n}$

Assume X = (A, H, D) is a spectral triple. we will try to build a spectral triple for $A \rtimes_{\alpha} \mathbb{Z}$:

Hilbert Space:
$$K = H \otimes \ell^2(\mathbb{Z}) \otimes \mathbb{C}^2 = \ell^2(\mathbb{Z}, H \oplus H)$$

 $f \in K \Rightarrow f = (f_n)_{n \in \mathbb{Z}}; f_n = (f_{n+}, f_{n-}), f_{n,\pm} \in H$

Representation: The left regular representation $\hat{\pi}$ of $A \rtimes_{\alpha} \mathbb{Z}$:

$$(\hat{\pi}(a)f)_n = \pi \circ \alpha^{-n}(a)(f_n) \qquad (\hat{u}f)_n = f_{n-1}$$

 \hat{u} unitary on K and $(\hat{\pi}, \hat{u})$ is a covariant pair $\Rightarrow \hat{\pi}$ extends to $A \rtimes_{\alpha} \mathbb{Z}$ by $\hat{\pi}(\sum_{n} a_{n} u^{n}) = \sum_{n} \hat{\pi}(a_{n}) \hat{u}^{n}$

Dirac Operator: Kasparov's external product of D and ∂

$$\left(\widehat{D}f\right)_{n} = \left[\begin{array}{cc} 0 & D - \imath n \\ D + \imath n & 0 \end{array}\right] f_{n}$$

Assume X = (A, H, D) is a spectral triple. we will try to build a spectral triple for $A \rtimes_{\alpha} \mathbb{Z}$:

Hilbert Space:
$$K = H \otimes \ell^2(\mathbb{Z}) \otimes \mathbb{C}^2 = \ell^2(\mathbb{Z}, H \oplus H)$$

 $f \in K \Rightarrow f = (f_n)_{n \in \mathbb{Z}}; f_n = (f_{n+}, f_{n-}), f_{n,\pm} \in H$

Representation: The left regular representation $\hat{\pi}$ of $A \rtimes_{\alpha} \mathbb{Z}$:

$$(\hat{\pi}(a)f)_n = \pi \circ \alpha^{-n}(a)(f_n) \qquad (\hat{u}f)_n = f_{n-1}$$

 \hat{u} unitary on K and $(\hat{\pi}, \hat{u})$ is a covariant pair $\Rightarrow \hat{\pi}$ extends to $A \rtimes_{\alpha} \mathbb{Z}$ by $\hat{\pi}(\sum_{n} a_{n} u^{n}) = \sum_{n} \hat{\pi}(a_{n}) \hat{u}^{n}$

Dirac Operator: Kasparov's external product of D and ∂

$$\left(\widehat{D}f\right)_{n} = \left[\begin{array}{cc} 0 & D - in \\ D + in & 0 \end{array}\right] f_{n}$$

 \widehat{D} is (essentially) self-dajoint with compact resolvent

$$\left(\left[\widehat{D}, \widehat{u} \right] f \right)_n = \left[\begin{array}{cc} 0 & -i \\ i & 0 \end{array} \right] f_{n-1}$$

$$\left(\left[\widehat{D}, \widehat{u} \right] f \right)_n = \left[\begin{array}{cc} 0 & -i \\ i & 0 \end{array} \right] f_{n-1}$$

$$\left(\left[\widehat{D},\widehat{\pi}(a)\right]f\right)_n = \left[\begin{array}{cc} 0 & 1\\ 1 & 0 \end{array}\right] \left[D, \pi \circ \alpha^{-n}(a)\right]f_n$$

$$\left(\left[\widehat{D}, \widehat{u} \right] f \right)_n = \left[\begin{array}{cc} 0 & -i \\ i & 0 \end{array} \right] f_{n-1}$$

$$\left(\left[\widehat{D},\widehat{\pi}(a)\right]f\right)_{n} = \left[\begin{array}{cc} 0 & 1\\ 1 & 0 \end{array}\right] \left[D, \pi \circ \alpha^{-n}(a)\right]f_{n}$$

Definition

Let X = (A, H, D) be a spectral triple. We say that the automorphism $\alpha \in \operatorname{Aut}(A)$ is **equicontinuous** if

$$\left(\left[\widehat{D}, \widehat{u} \right] f \right)_n = \left[\begin{array}{cc} 0 & -i \\ i & 0 \end{array} \right] f_{n-1}$$

$$\left([\widehat{D}, \widehat{\pi}(a)] f \right)_n = \left[\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right] [D, \pi \circ \alpha^{-n}(a)] f_n$$

Definition

Let X = (A, H, D) be a spectral triple. We say that the automorphism $\alpha \in \operatorname{Aut}(A)$ is **equicontinuous** if

$$ightharpoonup a \in \mathcal{C}^1(X) \Leftrightarrow lpha(a) \in \mathcal{C}^1(X)$$

$$\left(\left[\widehat{D}, \widehat{u} \right] f \right)_n = \left[\begin{array}{cc} 0 & -i \\ i & 0 \end{array} \right] f_{n-1}$$

$$\left(\left[\widehat{D},\widehat{\pi}(a)\right]f\right)_{n} = \left[\begin{array}{cc} 0 & 1\\ 1 & 0 \end{array}\right] \left[D, \pi \circ \alpha^{-n}(a)\right]f_{n}$$

Definition

Let X = (A, H, D) be a spectral triple. We say that the automorphism $\alpha \in \operatorname{Aut}(A)$ is **equicontinuous** if

- $ightharpoonup a \in \mathcal{C}^1(X) \Leftrightarrow lpha(a) \in \mathcal{C}^1(X)$
- ▶ $\sup_{n\in\mathbb{Z}} \|[D, \pi \circ \alpha^{-n}(a)\| < \infty \text{ for all } a \in \mathcal{C}^1(X).$

$$\left(\left[\widehat{D}, \widehat{u} \right] f \right)_n = \left[\begin{array}{cc} 0 & -i \\ i & 0 \end{array} \right] f_{n-1}$$

$$\left([\widehat{D}, \widehat{\pi}(a)] f \right)_n = \left[\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right] [D, \pi \circ \alpha^{-n}(a)] f_n$$

Definition

Let X = (A, H, D) be a spectral triple. We say that the automorphism $\alpha \in \operatorname{Aut}(A)$ is **equicontinuous** if

- $ightharpoonup a \in \mathcal{C}^1(X) \Leftrightarrow lpha(a) \in \mathcal{C}^1(X)$
- ▶ $\sup_{n\in\mathbb{Z}} \|[D, \pi \circ \alpha^{-n}(a)\| < \infty \text{ for all } a \in \mathcal{C}^1(X).$

Theorem (Bellissard-Marcolli-R)

 $(A \rtimes_{\alpha} \mathbb{Z}, K, \widehat{D})$ is a spectral triple. Moreover, if (A, H, D) is a spectral metric space and α is an equicontinuous automorphism of A, then $(A \rtimes_{\alpha} \mathbb{Z}, K, \widehat{D})$ is a spectral metric space.

 Crossed product of an isometric diffeomorphism on a compact Riemannian (spin^c) manifold, e.g., the rotation algebra (motivating for our construction), and more generally:

- Crossed product of an isometric diffeomorphism on a compact Riemannian (spin^c) manifold, e.g., the rotation algebra (motivating for our construction), and more generally:
- NC or classical tori: by iteration of the crossed products, one can exactly recover the so called canonical spectral triples for the NC or classical tori

- Crossed product of an isometric diffeomorphism on a compact Riemannian (spin^c) manifold, e.g., the rotation algebra (motivating for our construction), and more generally:
- NC or classical tori: by iteration of the crossed products, one can exactly recover the so called canonical spectral triples for the NC or classical tori
- ▶ Crossed product $C(M) \rtimes \mathbb{Z}$ of a diffeomorphism ϕ on a compact Riemannian (spin^c) manifold (M,g), with the following condition

$$\sup_{k \in \mathbb{Z}} \left(\sup_{P \neq P' \in M} \frac{d_g\left(\phi^k(P), \phi^k(P')\right)}{d_g(P, P')} \right) < \infty$$

- Crossed product of an isometric diffeomorphism on a compact Riemannian (spin^c) manifold, e.g., the rotation algebra (motivating for our construction), and more generally:
- NC or classical tori: by iteration of the crossed products, one can exactly recover the so called canonical spectral triples for the NC or classical tori
- ▶ Crossed product $C(M) \rtimes \mathbb{Z}$ of a diffeomorphism ϕ on a compact Riemannian (spin^c) manifold (M,g), with the following condition

$$\sup_{k \in \mathbb{Z}} \left(\sup_{P \neq P' \in M} \frac{d_g\left(\phi^k(P), \phi^k(P')\right)}{d_g(P, P')} \right) < \infty$$

▶ Bunce-Deddens algebras: odometer action on the Cantor set

