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Object of the talk

This talk presents a new form of equivalence between minimal
free Cantor systems which has a natural dynamical and a
natural C*-algebraic picture.

This talk is based upon:

Paper

C∗-algebraic characterization of bounded orbit injection
equivalence for minimal free Cantor systems
Frédéric Latrémolière, Nic Ormes, 2011, Rocky Mountain
Journal of Mathematics (Accepted in 2009), ArXiv: 0903.1881.
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Classifying dynamics

Problem

When are two actions of Zd on two compact spaces equivalent?

Maybe the most natural equivalence is conjugacy. Two actions
(X,φ) and (Y, ψ) of Zd are conjugate when there exists a
homeomorphism h : X → Y such that:

∀z ∈ Zd ψz ◦ h = h ◦ φz.

However, there is no good general invariant known, and it is
usually a delicate problem.
As the problem of classification up to conjugacy is complicated,
one may try to define weaker equivalence notions which may be
more approachable. An example is (strong) Orbit equivalence.
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Kakutani Equivalence: Derived
Systems

Let (X,φ,Z) be a dynamical system and assume that the orbit
of each point is dense.

Definition

Let A ⊆ X be a nonempty clopen set. The derived system
(A,Z, ρ) is defined by setting ρ1(x) to be the first return time
of x ∈ A to A:

∀x ∈ A ρ1(x) = inf{n ∈ N, n > 0 : φn(x) ∈ A}.
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Kakutani Equivalence: definition

Definition

Two dynamical systems (X,φ,Z) and (Y, ψ,Z) are Kakutani
equivalent when they are conjugate to derived systems of some
dynamical system (Z, ρ,Z).

Definition

Two dynamical systems (X,φ,Z) and (Y, ψ,Z) are
flip-Kakutani equivalent when they are Kakutani equivalent, or
one is Kakutani equivalent to the other with time reversed.

How to we generalize this notion to Zd?



C*-algebras
and Kakutani
Equivalence of

minimal
Cantor
systems

Frédéric
Latrémolière,

PhD

Equivalence of
Dynamical
Systems

C*-Crossed-
products

Generalized
Kakutani and
Morita
Equivalence

Kakutani Equivalence: definition

Definition

Two dynamical systems (X,φ,Z) and (Y, ψ,Z) are Kakutani
equivalent when they are conjugate to derived systems of some
dynamical system (Z, ρ,Z).

Definition

Two dynamical systems (X,φ,Z) and (Y, ψ,Z) are
flip-Kakutani equivalent when they are Kakutani equivalent, or
one is Kakutani equivalent to the other with time reversed.

How to we generalize this notion to Zd?



C*-algebras
and Kakutani
Equivalence of

minimal
Cantor
systems

Frédéric
Latrémolière,

PhD

Equivalence of
Dynamical
Systems

C*-Crossed-
products

Generalized
Kakutani and
Morita
Equivalence

Kakutani Equivalence: definition

Definition

Two dynamical systems (X,φ,Z) and (Y, ψ,Z) are Kakutani
equivalent when they are conjugate to derived systems of some
dynamical system (Z, ρ,Z).

Definition

Two dynamical systems (X,φ,Z) and (Y, ψ,Z) are
flip-Kakutani equivalent when they are Kakutani equivalent, or
one is Kakutani equivalent to the other with time reversed.

How to we generalize this notion to Zd?



C*-algebras
and Kakutani
Equivalence of

minimal
Cantor
systems

Frédéric
Latrémolière,

PhD

Equivalence of
Dynamical
Systems

C*-Crossed-
products

Generalized
Kakutani and
Morita
Equivalence

Bounded orbit injection

We define a generalized notion of derived systems for Zd
actions.

Definition (Lightwood, Ormes 2007)

Let (X,φ,Zd) and (Y, ψ,Zd) be two dynamical systems. A
map θ : X → Y is a orbit injection when it is a continuous
open injection such that for all x, y ∈ X:

∃z ∈ Zd φz(x) = y ⇐⇒ ∃n(z, x) ∈ Zd ψn(z,x)(θ(x)) = θ(y).

The idea behind this definition is that a derived system defines
a natural orbit injection, and conversely if an orbit injection
exists between Z-actions, we have in fact a derived system.
The map n is unique if the action ψ is free. An orbit injection
is bounded when it has a bounded cocycle.
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BOIE

We can define a generalized notion of Kakutani equivalence as
follows:

Definition (Lightwood, Ormes 2007)

Two dynamical systems (X,φ,Zd) and (Y, ψ,Zd) are bounded
orbit injection equivalent when there exists a dynamical system
(Z, ρ,Zd) and bounded orbit injections from (X,φ,Zd) and
(Y, ψ,Zd) into (Z, ρ,Zd).

This notion generalizes flip-Kakutani equivalence for actions of
Zd.
Are they any good invariant for this relation? For this, we shall
restrict ourselves to a class of dynamical systems for which
many of our equivalence relations have been successfuly
understood.
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Minimal Free Cantor Systems

A cantor set is a topological space homeomorphic to the usual
middle-third Cantor set, or equivalently it is a perfect,
completely disconnected compact metrizable space.

Definition

Let X be a Cantor set. A minimal free Cantor system is a free
action of Zd on X by homeomorphisms such that every point
has a dense orbit in X.

We will denote a free minimal dynamical system by (X,φ,Zd)
where the homeomorphism of X defined by z ∈ Zd is denoted
φz.
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Definition
Let (X,φ,Zd) be a dynamical system. The continuous
functions on the orbit space is:

{f ∈ C(X) : ∀z ∈ Zd f ◦ φz = f}.

This reduces to constants when φ is minimal. Is there a good
(noncommutative) replacement? The idea is to require only
that f ∈ C(X) and f ◦ φz be “equivalent” in some way. We
arrive at:

Definition

Let (X,φ,Zd) be a dynamical system. The C*-crossed-product
C(X)oφ Zd is the universal C*-algebra generated by C(X)
and unitaries U z (z ∈ Zd) such that U z+z

′
= U zU z

′
and

U zfU−z = f ◦ φ−z for all z, z′ ∈ Zd.

This notion was introduced by Zeller-Meier in 68 and has been
a major source of examples.
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Giordano, Putnam, Skau

The two main results in the subject of minimal free Cantor
systems were established by these three authors in 95.

Theorem (GPS, 95)

Two free minimal Cantor systems (X,φ,Z) and (Y, ψ,Z) are
strongly orbit equivalent if and only if their C*-crossed-product
algebras are *-isomorphic.

These C*-algebras are fully characterized by their ordered
K-theory, so ordered K-theory is a complete invariant for
strong orbit equivalence for minimal free Cantor systems.

Theorem (GPS, 95)

Two free minimal Cantor systems (X,φ,Z) and (Y, ψ,Z) are
flip conjugate if and only if there is a *-isomorphism µ between
their C*-crossed-products mapping C(X) onto C(Y ).
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Kakutani

What about Kakutani’s equivalence?

Theorem (GPS, 95)

Two free minimal Cantor systems (X,φ,Z) and (Y, ψ,Z) are
strongly orbit Kakutani equivalent if and only if their
C*-crossed-product algebras are Morita equivalent.

We see that in principle, it is easier to show C*-algebras are
Morita equivalent, so strong orbit Kakutani is indeed weaker
than conjugacy.
Can we extend this result to characterize flip-Kakutani and its
generalization, BOIE?
Note: continuity of the cocycle in orbit equivalence is the key
difference between strong orbit eq and bounded orbit eq, the
latter being flip-conjugacy in our case.
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Morita Equivalence

In general, Morita equivalence is an algebraic concept: two
rings are Morita equivalent when their categories of modules
are equivalent.

One can always choose an equivalence functor
as a tensor by a bimodule.

Question

What is the appropriate notion of Morita equivalence for
C*-algebras?

Though rings, C*-algebras are more. Rieffel proposes a
stronger version of equivalence.

Definition (Rieffel)

Let A and B be two C*-algebras. They are Rieffel-Morita
equivalent when their categories of hermitian modules are
equivalent.
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Morita Equivalence, 2

We have:

Theorem (Rieffel)

Two C*-algebras A and B are Rieffel-Morita equivalent when
there exists two Hilbert C*-bimodule M and N such that
M ⊗B N = A and N ⊗AM = B.

We have the following important:

Theorem

Let A be a simple C*-algebra. Let p ∈ A be a projection. Then
pAp and A are Rieffel-Morita equivalent.

Proof.

Let M = pA and N = Ap. Note that ApA = A by
simplicity.
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Two C*-algebras A and B are Rieffel-Morita equivalent when
there exists two Hilbert C*-bimodule M and N such that
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Our theorem

We have:

Theorem (LO, 09)

Let (X,φ,Zd) and (Y, ψ,Zd) be two free minimal Cantor
systems. Then the following are equivalent:

1 (X,φ,Zd) and (Y, ψ,Zd) are bounded orbit injection
equivalent,

2 There exists a *-monomorphism
α : C(X)oφ Zd → C(Y )oψ Zd such that the range of α
is pC(Y )oψ Zdp with α(1) = p.

Thus, BOIE is a stronger notion that Morita equivalence, as we
need to recall the base algebra on which the action occurs.
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Step 1

To prove our result, we start by defining some important
projections:

pzh(y) =

{
1 if y = θ(x), x = φz(x′) and y = ψh(θ(x′))
0 otherwise.

1 pzh ∈ C(Y ),

2 For a fix z these projections are orthogonal,

3 {h : pzh 6= 0} is finite for each z,

4
∑

h p
z
h = p where p is the projection on θ(X),

5 pz+z
′

h =
∑

h′ p
z
h′ · pz

′
h−h′ ◦ ψ−h

′
.
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Step 1 - proof outline

θ(X) is clopen in Y .

1 θ is open and continuous.

2 pzh is the indicator of the image by θ of (n(·, z))−1(h),
which is clopen.

3 Let y such that pzh(y) = pzh′(y) = 1. Then: y = θ(x) and:

ψh(y) = θ(φz(x))

and same with h′. Since ψ is free we have h = h′.
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Step 1 - proof outline

pzh is well-defined.

1 θ is open and continuous.

2 pzh is the indicator of the image by θ of (n(·, z))−1(h),
which is clopen.

3 Let y such that pzh(y) = pzh′(y) = 1. Then: y = θ(x) and:

ψh(y) = θ(φz(x))

and same with h′. Since ψ is free we have h = h′.
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Step 1 - proof outline

pzh and pzh′ are orthogonal.

1 θ is open and continuous.

2 pzh is the indicator of the image by θ of (n(·, z))−1(h),
which is clopen.

3 Let y such that pzh(y) = pzh′(y) = 1. Then: y = θ(x) and:

ψh(y) = θ(φz(x))

and same with h′. Since ψ is free we have h = h′.
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Step 1 - proof (convolution)

pz+z
′

h =
∑
h′

pzh′ · pz
′
h−h′ ◦ ψ−h

′
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Step 1 - proof (convolution)

pz+z
′

h =
∑
h′

pzh′ · pz
′
h−h′ ◦ ψ−h

′

Let y ∈ Y and z, z′, h ∈ Zd such that pz+z
′

h (y) = 1. Then there
exists x, x′ ∈ X such that:

y = θ(x), x = φz+z
′
(x′), ψh(y) = θ(x′).

Thus:
x = φz(φz

′
(x′)).
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Step 1 - proof (convolution)

pz+z
′

h =
∑
h′

pzh′ · pz
′
h−h′ ◦ ψ−h

′

x = φz(φz
′
(x))

so there exists n(φz
′
(x′), z)′ := h′ such that:

y = ψh
′
(θ(φz

′
(x′)))

i.e. pzh′(y) = 1. This is the only possible nonzero pz?(y) by
orthogonality.
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Step 1 - proof (convolution)

pz+z
′

h =
∑
h′

pzh′ · pz
′
h−h′ ◦ ψ−h

′

We had y = ψh
′
(θ(φz

′
(x′))). So:

ψ−h
′
(y) = θ(φz

′
(x′)).

On the other hand:
ψh(y) = θ(x′)

so
ψ−h

′
(y) = ψh−h

′
(θ(x′))

so
pz

′
h−h′(ψ

−h′(y)) = 1.
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Step 2

We can define unitaries by:

V z =
∑
h

pzhU
h
ψ + (1− p)

and we check that z 7→ V z is a group homomorphism into the
unitary group of C(Y )oψ Zd. This uses our convolution
formula for the pzh.

We then define π : C(X) 7→ C(Y ) by π(f)(y) = f(x) if
y = θ(x) and 0 otherwise. π goes backward! However, we
check that (π, V ) is a covariant representation for
(C(X), φ,Zd). To check this is tricky and uses the orbit
injection property a lot!
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Step 3

1 The pair (π, V ) is covariant, so we can define a
*-morphism α : C(X)oφ Zd → C(Y )oψ Zd which
extends it.

2 Since the action of φ is minimal, α is injective. Its range is
a sub-algebra of pC(Y )o Zdp. Is it all of it?

3 We write pUhψp as a sum of elements all in the range of α
by decomposing θ(X) as the disjoint union of
{x ∈ θ(X) : ψh(x) ∈ θ(X)}.
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a sub-algebra of pC(Y )o Zdp. Is it all of it?

3 We write pUhψp as a sum of elements all in the range of α
by decomposing θ(X) as the disjoint union of
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Step 4 (converse)
Now, we suppose given a *-monomorphism with the listed
properties. Is it induced by some bounded orbit injection?

Lemma (generalized from GPS95)

Let v be a unitary in C(X)oφ Zd such that
vC(X)v∗ = C(X). Then:

v = f
∑
z

pzU
z
φ

where f ∈ C(X) and pz are mutually ortogonal projections,
only finitely nonzero, summing to 1.
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Let v be a unitary in C(X)oφ Zd such that
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Step 4 (converse)
Now, we suppose given a *-monomorphism with the listed
properties. Is it induced by some bounded orbit injection?

Lemma (generalized from GPS95)

Let v be a unitary in C(X)oφ Zd such that
vC(X)v∗ = C(X). Then:

v = f
∑
z

pzU
z
φ

where f ∈ C(X) and pz are mutually ortogonal projections,
only finitely nonzero, summing to 1.

Define pz = |E(vU−zφ )|. Consider the regular representation π
for the Dirac measure at some x ∈ X, which is faithful (mini-
mality) and irreducible and acts on l2(Zd) by:

π(U zp )δh = δh+z and π(f)(δh) = f(φ−h(x)).
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Step 4 (converse)
Now, we suppose given a *-monomorphism with the listed
properties. Is it induced by some bounded orbit injection?

Lemma (generalized from GPS95)

Let v be a unitary in C(X)oφ Zd such that
vC(X)v∗ = C(X). Then:

v = f
∑
z

pzU
z
φ

where f ∈ C(X) and pz are mutually ortogonal projections,
only finitely nonzero, summing to 1.

Note that π(v) commutes with π(C(X)) so it commutes with
l∞(G). Hence, as it is a unitary, it is of the form π(v)(δh) =
λhδσ(h) for some permutation σ of Zd.
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Step 4 (converse)
Now, we suppose given a *-monomorphism with the listed
properties. Is it induced by some bounded orbit injection?

Lemma (generalized from GPS95)

Let v be a unitary in C(X)oφ Zd such that
vC(X)v∗ = C(X). Then:

v = f
∑
z

pzU
z
φ

where f ∈ C(X) and pz are mutually ortogonal projections,
only finitely nonzero, summing to 1.

A direct computation shows that π(pz) is a projection; that they
are mutually orthogonal, and satisfy the desired properties.
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Step 5

1 Thus, given a *-monomorphism with the described
properties, the image of U zφ is a unitary V z which
stabilizes C(Y ). The projections given by our lemma play
the role of pzh in the first direction of the proof.

2 We can reconstruct an injection θ by α(f) = f ◦ θ−1
which makes sense when we restrict ourselves to
f ∈ pC(Y )p. We then prove that it is an orbit injection.

3 One direction of the orbit injection property — namely
that if two points are in the same orbit in Y and images of
points in X by θ, the latter are in the same orbit for φ —
is quite tricky.
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1 Thus, given a *-monomorphism with the described
properties, the image of U zφ is a unitary V z which
stabilizes C(Y ). The projections given by our lemma play
the role of pzh in the first direction of the proof.

2 We can reconstruct an injection θ by α(f) = f ◦ θ−1
which makes sense when we restrict ourselves to
f ∈ pC(Y )p. We then prove that it is an orbit injection.

3 One direction of the orbit injection property — namely
that if two points are in the same orbit in Y and images of
points in X by θ, the latter are in the same orbit for φ —
is quite tricky.
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