Preface

This book provides an introduction both to real analysis and to a range of important
applications that depend on this material. Three-fifths of the book is a series of
essentially independent chapters covering topics from Fourier series and polynomial
approximation to discrete dynamical systems and convex optimization. Studying
these applications can, we believe, both improve understanding of real analysis and
prepare for more intensive work in each topic. There is enough material to allow a
choice of applications and to support courses at a variety of levels.

This book is a substantial revision of Real Analysis with Real Applications, which
was published in 2001 by Prentice Hall. The major change in this version is a greater
emphasis on the latter part of the book, focussed on applications. A few of these
chapters would make a good second course in real analysis through the optic of one
or more applied areas. Any single chapter can be used for a senior seminar.

The first part of the book contains the core results of a first course in real analysis.
This background is essential to understanding the applications. In particular, the
notions of limit and approximation are two sides of the same coin, and this interplay
is central to the whole book. Several topics not needed for the applications are not
included in the book but are available online, at both this book’s official website
www.springer.com/978-0-387-98097-3 and our own personal websites,
www.math.uwaterloo.ca/~krdavids/ and
www.math.unl.edu/~adonsigl/.

The applications have been chosen from both classical and modern topics of in-
terest in applied mathematics and related fields. Our goal is to discuss the theoretical
underpinnings of these applied areas, showing the role of the fundamental princi-
ples of analysis. This is not a methods course, although some familiarity with the
computational or methods-oriented aspects of these topics may help the student ap-
preciate how the topics are developed. In each application, we have attempted to
get to a number of substantial results, and to show how these results depend on the
theory.

This book began in 1984 when the first author wrote a short set of course notes
(120 pages) for a real analysis class at the University of Waterloo designed for stu-
dents who came primarily from applied math and computer science. The idea was to
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get to the basic results of analysis quickly, and then illustrate their role in a variety
of applications. At that time, the applications were limited to polynomial approxi-
mation, Newton’s method, differential equations, and Fourier series.

A plan evolved to expand these notes into a textbook suitable for a one- or two-
semester course. We expanded both the theoretical section and the choice of appli-
cations in order to make the text more flexible. As a consequence, the text is not
uniformly difficult. The material is arranged by topic, and generally each chapter
gets more difficult as one progresses through it. The instructor can omit some more
difficult topics in the early chapters if they will not be needed later.

We emphasize the role of normed vector spaces in analysis, since they provide a
natural framework for most of the applications. So some knowledge of linear algebra
is needed. Of course, the reader also should have a reasonable working knowledge
of differential and integral calculus. While multivariable calculus is an asset because
of the increased level of sophistication and the incorporation of linear algebra, it is
not essential. Some of this background material is outlined in the review chapter.

By and large, the various applications are independent of each other. However,
there are references to material in other chapters. For example, in the wavelets chap-
ter (Chapter 15), it seems essential to make comparisons with the classical approxi-
mation results for Fourier series and for polynomials.

It is possible to use an application chapter on its own for a student seminar or
topics course. We have included several modern topics of interest in addition to
the classical subjects of applied mathematics. The chapter on discrete dynamical
systems (Chapter 11) introduces the notions of chaos and fractals and develops a
number of examples. The chapter on wavelets (Chapter 15) illustrates the ideas with
the Haar wavelet. It continues with a construction of wavelets of compact support,
and gives a complete treatment of a somewhat easier continuous wavelet. In the final
chapter (Chapter 16), we study convex optimization and convex programming. Both
of these latter chapters require more linear algebra than the others.

We would like to thank various people who worked with early versions of this
book for their helpful comments, in particular, Robert André, John Baker, Jon Bor-
wein, Ola Bratteli, Brian Forrest, John Holbrook, Stephen Krantz, Michael Lam-
oureux, Leo Livshits, Mike McAsey, Robert Manning, John Orr, Justin Peters,
Gabriel Prajitura, David Seigel, Ed Vrscay, and Frank Zorzitto. We also thank our
students Geoffrey Crutwell, Colin Davidson, Sean Desaulniers, Masoud Kamgar-
pour, Michael Lipnowski, and Alex Wright for working through parts of the book
and solving many of the exercises. We also thank the students in various classes at
the University of Waterloo and at the University of Nebraska, where early versions
of the text were used and tested.

We welcome comments on this book.

Waterloo, ON & Lincoln, NE Kenneth R. Davidson
March, 2009 Allan P. Donsig
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