Symmetries of Cuntz-Pimsner algebras

Valentin Deaconu

University of Nevada, Reno

UNL Functional Analysis Seminar Nov 3, 2018

Outline

- We recall the concept of Cuntz-Pimsner algebra, crossed product C*-correspondences, and the Hao-Ng theorem.
- We give applications to group actions on graph C^* -algebras and make the connection with the Doplicher-Roberts algebras of group representations.
- We illustrate with some examples, including group actions on Hermitian vector bundles.
- We discuss similar results for groupoid actions.

Cuntz-Pimsner algebras

- A C^* -correspondence from A to B is a Hilbert B-module \mathcal{H} with a left multiplication given by $\phi: A \to \mathcal{L}_B(\mathcal{H})$.
- It can be thought as a multivalued, partially defined morphism $A \to B$.
- If A = B, the Cuntz-Pimsner algebra $\mathcal{O}_A(\mathcal{H})$ is universal for covariant representations $\pi : A \to C, \tau : \mathcal{H} \to C$

$$\tau(a\xi) = \pi(a)\tau(\xi), \ \pi(\langle \xi, \eta \rangle) = \tau(\xi)^*\tau(\eta)$$
$$\pi(a) = \psi(\phi(a)) \ \text{for} \ a \in J_{\mathcal{H}} = \phi^{-1}(\mathcal{K}_A(\mathcal{H})) \cap (\ker \phi)^{\perp},$$
where $\psi : \mathcal{K}_A(\mathcal{H}) \to C, \psi(\theta_{\xi,\eta}) = \tau(\xi)\tau(\eta)^*.$

• Denote by (π_A, τ_H) the universal representation of (A, \mathcal{H}) .

- If $\alpha \in Aut(A)$, then $\mathcal{O}_A(\mathcal{H}_\alpha) \cong A \rtimes_\alpha \mathbb{Z}$.
- If $E = (E^0, E^1, r, s)$ is a (topological) graph and $A = C_0(E^0)$, $\mathcal{H}_E = \overline{C_c(E^1)}$, then $\mathcal{O}_A(\mathcal{H}_E) = C^*(E)$.
- In particular we obtain Cuntz algebras \mathcal{O}_n and Cuntz-Krieger algebras \mathcal{O}_{Λ} related to subshifts of finite type.
- If $\mathcal{E} \to X$ is a complex vector bundle, A = C(X), $\mathcal{H} = \Gamma(\mathcal{E})$, then $\mathcal{O}_A(\mathcal{H}) = \mathcal{O}_{\mathcal{E}}$ is a (locally trivial) continuous field of Cuntz algebras.
- If \mathcal{E} is a line bundle, then $\mathcal{O}_{\mathcal{E}}$ is commutative with spectrum homeomorphic to the circle bundle of \mathcal{E} .
- For $X = S^{2k}$ and $[\mathcal{E}] = n + mt \in K^0(S^{2k}) \cong \mathbb{Z}[t]/(t^2)$ with $n \geq 3$ and $\gcd(n-1,m) = 1$ we have

$$K_0(\mathcal{O}_{\mathcal{E}}) \cong \mathbb{Z}/(n-1)^2\mathbb{Z} \neq K_0(C(S^{2k}) \otimes \mathcal{O}_n).$$

Group actions and crossed products

• A locally compact group G acts on (A, \mathcal{H}) by (α, β) if

$$\langle \beta_g(\xi), \beta_g(\eta) \rangle = \alpha_g(\langle \xi, \eta \rangle), \ \beta_g(\xi a) = \beta_g(\xi) \alpha_g(a), \ \beta_g(a\xi) = \alpha_g(a) \beta_g(\xi).$$

- By the universal property we get $\gamma: G \to Aut \mathcal{O}_A(\mathcal{H})$.
- For $a \in C_c(G, A), \xi \in C_c(G, \mathcal{H})$ define

$$(a\xi)(s) = \int_{G} a(t)\beta_{t}(\xi(t^{-1}s))dt, \ (\xi a)(s) = \int_{G} \xi(t)\alpha_{t}(a(t^{-1}s))dt,$$
$$\langle \xi, \eta \rangle(s) = \int_{G} \alpha_{t^{-1}}(\langle \xi(t), \eta(ts) \rangle)dt.$$

• The completion gives $(A \rtimes_{\alpha} G, \mathcal{H} \rtimes_{\beta} G)$.

Main results

• **Theorem** (Hao-Ng). If *G* is amenable, then

$$\mathcal{O}_A(\mathcal{H}) \rtimes_{\gamma} G \cong \mathcal{O}_{A \rtimes_{\alpha} G}(\mathcal{H} \rtimes_{\beta} G).$$

If is G abelian, this is \hat{G} -equivariant.

- **Lemma 1**. If G acts on (A, \mathcal{H}) and $A \rtimes G$ decomposes as $\bigoplus A_i$ with units q_i , then $\mathcal{H} \rtimes G$ decomposes into $\bigoplus q_i(\mathcal{H} \rtimes G)q_j$, a sum of C^* -correspondences from A_i to A_j .
- **Lemma 2**. If \mathcal{N} is an imprimitivity module from A to B and \mathcal{H} is a C^* -correspondence over A, then $\mathcal{H}' = \mathcal{N}^* \otimes_A \mathcal{H} \otimes_A \mathcal{N}$ is a C^* -correspondence over B and $\mathcal{O}_A(\mathcal{H})$ is Morita-Rieffel equivalent to $\mathcal{O}_B(\mathcal{H}')$.
- **Theorem** (D). If G compact acts on a discrete graph $E = (E^0, E^1, r, s)$, then $C^*(E) \rtimes G$ is Morita-Rieffel equivalent to a graph algebra.

Proof

• We have

$$C_0(E^0) \rtimes G \cong \bigoplus C(Gx) \rtimes G \cong \bigoplus C(G/G_x) \rtimes G \cong \bigoplus M_{|Gx|} \otimes C^*(G_x),$$

which is Morita-Rieffel equivalent to $C_0(V)$ via \mathcal{N} , with $V = \{v_i\}$ at most countable.

• Then $\mathcal{M} = \mathcal{N}^* \otimes (\mathcal{H}_E \rtimes G) \otimes \mathcal{N}$ over $C_0(V)$ determines a graph F with $F^0 = V$ and edges F^1 determined by the incidence matrix

$$a_{ij} = \dim p_i \mathcal{M} p_j$$

where $p_i = \chi_{\{v_i\}}$.

Then

$$C^*(E) \rtimes G \cong \mathcal{O}_{C_0(E^0) \rtimes G}(\mathcal{H}_E \rtimes G)$$

is Morita-Rieffel equivalent to $C^*(F)$.

• Let *E* be

• Here
$$A=C(E^0)=\mathbb{C}^3, \mathcal{H}=C(E^1)=\mathbb{C}^4$$
 and $G=\mathbb{Z}_2$ acts by
$$\alpha(a_1,a_2,a_3)=(a_1,a_3,a_2), \ \beta(\xi_1,\xi_2,\xi_3,\xi_4)=(\xi_2,\xi_1,\xi_4,\xi_3).$$

- Then $A \rtimes_{\alpha} \mathbb{Z}_2 \subset M_2(A)$ as $\begin{bmatrix} a & b \\ \alpha(b) & \alpha(a) \end{bmatrix}$ and $\mathcal{H} \rtimes_{\beta} \mathbb{Z}_2 \subset M_2(\mathcal{H})$ as $\begin{bmatrix} \xi & \eta \\ \beta(\eta) & \beta(\xi) \end{bmatrix}$ with obvious operations.
- Since $A \rtimes \mathbb{Z}_2 \cong \mathbb{C} \oplus \mathbb{C} \oplus M_2$, the crossed product $\mathcal{H} \rtimes \mathbb{Z}_2$ decomposes as $\mathbb{C}^2 \oplus \mathbb{C}^2 \oplus M_2$ and $C^*(E) \rtimes \mathbb{Z}_2$ is given by

- Let E be the graph with one vertex and three loops which gives \mathcal{O}_3 .
- The symmetric group S_3 acts trivially on $A = \mathbb{C}$ and by the permutation representation ρ on $\mathcal{H} = \mathbb{C}^3$.
- $\mathcal{H} \rtimes S_3$ decomposes over $A \rtimes S_3 \cong C^*(S_3)$ and $\mathcal{O}_3 \rtimes S_3$ is given by

• Recall that $\hat{S}_3 = \{\iota, \varepsilon, \sigma\}$, $\rho \sim \iota + \sigma$, and the Doplicher-Roberts algebra \mathcal{O}_{ρ} constructed from intertwiners (ρ^n, ρ^m) is Morita-Rieffel equivalent to the same graph algebra, using the character table of S_3 .

- Consider a hermitian G-vector bundle $\mathcal{E} \to X$. If X is a point, then \mathcal{E} is a G-module. If X has trivial action, then \mathcal{E} is a family of G-modules.
- The group G acts on $\Gamma(\mathcal{E})$ by

$$(g\xi)(x) = g\xi(g^{-1}x)$$

and we may study $\mathcal{O}_{\mathcal{E}} \rtimes G \cong \mathcal{O}_{C(X) \rtimes G}(\Gamma(\mathcal{E}) \rtimes G)$

- Fact 1. If G compact acts freely on $\mathcal{E} \to X$, then $\mathcal{O}_{\mathcal{E}} \rtimes G$ is a continuous field of Cuntz algebras over X/G.
- Fact 2. If G acts fiberwise on $\mathcal{E} \to X$ of rank n, then $\mathcal{O}_{\mathcal{E}} \rtimes G$ is a continuous field with fibers $\mathcal{O}_n \rtimes G$.
- If *X* is a manifold and *G* acts by diffeomorphisms, then $\mathcal{E} = TX \otimes \mathbb{C}$ becomes a *G*-bundle. What is $\mathcal{O}_{\mathcal{E}} \rtimes G$?

Groupoid actions

- Recall that a $C_0(X)$ -algebra is a C^* -algebra A together with a homomorphism $\theta: C_0(X) \to ZM(A)$ such that $\overline{\theta(C_0(X))A} = A$.
- For each $x \in X$ we define the fiber A_x as $A/\overline{\theta(I_x)A}$ where

$$I_x = \{ f \in C_0(X) : f(x) = 0 \}.$$

- A $C_0(X)$ -algebra A gives rise to an upper semicontinuous C^* -bundle \mathcal{A} such that $A \cong \Gamma_0(X, \mathcal{A})$.
- We say that a groupoid G acts on a $C_0(G^0)$ -algebra A if for each $g \in G$ there is an isomorphism $\alpha_g : A_{s(g)} \to A_{r(g)}$ such that

$$\alpha_{g_1g_2} = \alpha_{g_1} \circ \alpha_{g_2} \text{ for } (g_1, g_2) \in G^{(2)}.$$

- If the groupoid G acts on X, then $C_0(X)$ becomes in a natural way a $C_0(G^0)$ -algebra and G acts on $C_0(X)$ by $\alpha_g(f)(x) = f(g^{-1} \cdot x)$.
- Groupoid actions on elementary C^* -bundles over G^0 satisfying Fell's condition appear in the context of defining the Brauer group Br(G).

$C_0(X)$ - C^* -correspondences

- Let \mathcal{H} be a Hilbert module over a $C_0(X)$ -algebra A. Define the fibers $\mathcal{H}_x := \mathcal{H} \otimes_A A_x$ which are Hilbert A_x -modules.
- The set $Iso(\mathcal{H})$ of \mathbb{C} -linear isomorphisms between fibers becomes a groupoid with unit space X.
- We say that \mathcal{H} is a $C_0(X)$ - C^* -correspondence over A if there is a *-homomorphism $\phi: A \to \mathcal{L}_A(\mathcal{H})$ such that

$$\phi(fb)(\xi a) = \phi(b)(\xi fa)$$
 for all $f \in C_0(X)$, $a, b \in A$, $\xi \in \mathcal{H}$.

- Each fiber \mathcal{H}_x becomes a C^* -correspondence over A_x .
- An action of G on \mathcal{H} is given by a homomorphism $\rho: G \to \operatorname{Iso}(\mathcal{H})$ where $\rho_g: \mathcal{H}_{s(g)} \to \mathcal{H}_{r(g)}$ with $\rho_g = I$ if $g \in G^0$, such that

$$\langle \rho_g \xi, \rho_g \eta \rangle_{r(g)} = \alpha_g(\langle \xi, \eta \rangle_{s(g)}),$$

for $\xi, \eta \in \mathcal{H}_{s(g)}$ and

$$\rho_{\mathbf{g}}(\xi a) = \rho_{\mathbf{g}}(\xi)\alpha_{\mathbf{g}}(a), \quad \rho_{\mathbf{g}}(a\xi) = \alpha_{\mathbf{g}}(a)\rho_{\mathbf{g}}(\xi)$$

for
$$\xi \in \mathcal{H}_{s(g)}$$
, $a \in A_{s(g)}$.

Crossed products

- **Proposition**. Suppose the groupoid G with Haar system $\{\lambda^x\}$ acts on the $C_0(G^0)$ - C^* -correspondence \mathcal{H} over A.
- Then the completion of $\Gamma_c(G, r^*\mathcal{H})$ becomes a C^* -correspondence $\mathcal{H} \rtimes G$ over $A \rtimes G$, using the inner product

$$\langle \xi, \eta \rangle(g) = \int_G \alpha_h(\langle \xi(h^{-1}), \eta(h^{-1}g) \rangle_{s(h)}) d\lambda^{r(g)}(h),$$

and the multiplications

$$(\xi f)(g) = \int_G \xi(h) \alpha_h(f(h^{-1}g)) d\lambda^{r(g)}(h),$$

$$(f\xi)(g) = \int_G f(h)\rho_h(\xi(h^{-1}g))d\lambda^{r(g)}(h),$$

where $\xi, \eta \in \Gamma_c(G, r^*\mathcal{H}), f \in \Gamma_c(G, r^*A)$.

Hao-Ng for groupoids

- **Theorem** (D). Suppose G acts on a $C_0(G^0)$ - C^* -correspondence \mathcal{H} over A. Then the Katsura ideal $J_{\mathcal{H}}$ is G-invariant and G acts on $\mathcal{O}_A(\mathcal{H})$, which becomes a $C_0(G^0)$ -algebra with fibers $\mathcal{O}_{A_x}(\mathcal{H}_x)$ for $x \in G^0$.
- Let G amenable act on a $C_0(G^0)$ - C^* -correspondence \mathcal{H} over A. Assume that $J_{\mathcal{H} \rtimes G} \cong J_{\mathcal{H}} \rtimes G$. Then there are maps

$$\Phi: A \rtimes G \to \mathcal{O}_A(\mathcal{H}) \rtimes G, \ \Phi(f)(g) = \pi_A(f(g)),$$

$$\Psi: \mathcal{H} \rtimes G \to \mathcal{O}_A(\mathcal{H}) \rtimes G, \ \Psi(\xi)(g) = \tau_{\mathcal{H}}(\xi(g))$$

which induce an isomorphism

$$\mathcal{O}_{A\rtimes G}(\mathcal{H}\rtimes G)\cong\mathcal{O}_{A}(\mathcal{H})\rtimes G.$$

- Corollary. A vector bundle $p : \mathcal{E} \to X$ is called a *G*-bundle if $G^0 = X$ and there is a groupoid morphism $G \to \operatorname{Iso}(\mathcal{E})$.
- $\mathcal{O}_{\mathcal{E}} \rtimes G$ is the Cuntz-Pimsner algebra of the C^* -correspondence $\Gamma(\mathcal{E}) \rtimes G$ over $C^*(G)$.

Selected references

- V. Deaconu, Group actions on graphs and C*-correspondences, Houston J. Math vol. 44 No. 1 (2018), 147–168.
- V. Deaconu, A. Kumjian, D. Pask and A. Sims, Graphs of C*-correspondences and Fell bundles, Indiana Univ. Math. J. 59 (2010) 1687–1735.
- G. Hao, C.-K. Ng, Crossed products of C*-correspondences by amenable group actions, J. Math. Anal. Appl. 345 (2008), no. 2, 702–707.
- A. Kumjian, D. Pask, I. Raeburn, J. Renault, Graphs, Groupoids and Cuntz-Krieger algebras, J. of Funct. Anal. 144 (1997) No. 2, 505–541.
- M.H.Mann, I. Raeburn, C.E. Sutherland, Representations of finite groups and Cuntz-Krieger algebras, Bull. Austral. Math. Soc. 46(1992), 225–243.
- G. Segal, Equivariant K-theory, Inst. Hautes Études Sci. Publ. Math. No. 34 1968, 129–151.
- E. Vasselli, *The C*-algebra of a vector bundle and fields of Cuntz algebras*, J. Funct. Anal. 222 (2005), no. 2, 491–502.