Rigidity in group von Neumann algebra

IONUŢ CHIFAN (yonuts keyfun)

The University of Iowa

Nebraska-Iowa Functional Analysis Seminar University of Nebraska-Lincoln 2018/11/3

Summary

Rigidity in grou von Neumann algebra

I. CHIFA

von Neumai algebras

Main result

- Group von Neumann algebras: definitions; examples
 - Classification of group von Neumann algebras: description of the problems; revisit some older results; (infinite) direct product rigidity; amalgamated free product rigidity; wreath product rigidity; applications to rigidity in \mathbb{C}^* -setting
 - Future directions: some open problems

Group von Neumann algebras

Rigidity in grou von Neumann algebra

I. CHIFAN

von Neuman algebras

Main result

. ...

• (Murray-von Neumann '36)

 $\rightsquigarrow u: \Gamma \rightarrow \mathcal{U}(\ell^2\Gamma)$ - left regular representation

$$u_{\gamma}(\xi)(\lambda) = \xi(\gamma^{-1}\lambda), \quad \forall \gamma, \lambda \in \Gamma, \xi \in \ell^{2}\Gamma$$

 \rightarrow the von Neumann algebra associated with Γ is

$$\mathcal{L}(\Gamma) := \{ u_{\gamma} \, | \, \gamma \in \Gamma \}'' = \overline{\mathbb{C}[\Gamma]}^{SOT} \subset \mathfrak{B}(\ell^{2}\Gamma)$$

$$\longrightarrow T_i \xrightarrow{SOT} T$$
 iff $||T_i\eta - T\eta|| \to 0, \forall \eta \in \ell^2\Gamma$

$$ightharpoonup au(x) = \langle x \delta_e, \delta_e \rangle$$
 normal, state

• (faithful)
$$\tau(x^*x) = 0 \Leftrightarrow x = 0$$

• (tracial)
$$\tau(xy) = \tau(yx)$$

$$\rightsquigarrow \mathcal{L}(\Gamma)$$
 is a finite von Neumann algebra $(v^*v = 1 \Rightarrow vv^* = 1)$

Group von Neumann Algebras

 \longrightarrow $\mathcal{L}(\Gamma)$ as algebra of "left convolvers": $\forall \xi, \eta \in \ell^2\Gamma$ define the convolution $\xi * \eta : \Gamma \to \mathbb{C}$

$$\xi * \eta(\gamma) = \sum_{\lambda \in \Gamma} \xi(\gamma \lambda^{-1}) \eta(\lambda)$$

$$||\xi * \eta||_{\infty} \leq ||\xi||_2 ||\eta||_2, \quad \xi * \delta_{\gamma} = v_{\gamma^{-1}}(\xi), \quad \delta_{\gamma} * \eta = u_{\gamma}(\eta)$$

$$||\xi * \eta||_{\infty} \leq ||\xi||_2 ||\eta||_2, \quad \xi * \delta_{\gamma} = v_{\gamma^{-1}}(\xi), \quad \delta_{\gamma} * \eta = u_{\gamma}(\eta)$$

$$||\xi * \eta||_{\infty} \leq ||\xi||_2 ||\eta||_2, \quad \xi * \delta_{\gamma} = v_{\gamma^{-1}}(\xi), \quad \delta_{\gamma} * \eta = u_{\gamma}(\eta)$$

$$||\xi * \eta||_{\infty} \leq ||\xi||_2 ||\eta||_2, \quad \xi * \delta_{\gamma} = v_{\gamma^{-1}}(\xi), \quad \delta_{\gamma} * \eta = u_{\gamma}(\eta)$$

$$||\xi * \eta||_{\infty} \leq ||\xi||_2 ||\eta||_2, \quad \xi * \delta_{\gamma} = v_{\gamma^{-1}}(\xi), \quad \delta_{\gamma} * \eta = u_{\gamma}(\eta)$$

$$||\xi * \eta||_{\infty} \leq ||\xi||_2 ||\eta||_2, \quad \xi * \delta_{\gamma} = v_{\gamma^{-1}}(\xi), \quad \delta_{\gamma} * \eta = u_{\gamma}(\eta)$$

$$||\xi * \eta||_{\infty} \leq ||\xi||_2 ||\eta||_2, \quad \xi * \delta_{\gamma} = v_{\gamma^{-1}}(\xi), \quad \delta_{\gamma} * \eta = u_{\gamma}(\eta)$$

$$||\xi * \eta||_{\infty} \leq ||\xi||_2 ||\eta||_2, \quad \xi * \delta_{\gamma} = v_{\gamma^{-1}}(\xi), \quad \delta_{\gamma} * \eta = u_{\gamma}(\eta)$$

$$||\xi * \eta||_{\infty} \leq ||\xi||_2 ||\eta||_2, \quad \xi * \delta_{\gamma} = v_{\gamma^{-1}}(\xi), \quad \delta_{\gamma} * \eta = u_{\gamma}(\eta)$$

$$\eta \to L_{\xi}(\eta) = \xi * \eta : D_{\xi} \to \ell^{2}\Gamma$$
 $\eta \to R_{\xi}(\eta) = \eta * \xi : D'_{\xi} \to \ell^{2}\Gamma$

 $\longrightarrow L_{\mathcal{E}}, R_{\mathcal{E}}$ have closed graphs and $L_{\mathcal{E}}R_{\mathcal{E}} = R_{\mathcal{E}}L_{\mathcal{E}}$

$$lconv(\Gamma) = \{L_{\xi} \mid D_{\xi} = \ell^{2}\Gamma\} \subset \mathfrak{B}(\ell^{2}\Gamma)$$

 $rconv(\Gamma) = \{R_{\xi} \mid D'_{\xi} = \ell^{2}\Gamma\} \subset \mathfrak{B}(\ell^{2}\Gamma)$

$$ightharpoonup L_{\xi*\eta} = L_{\xi}L_{\eta}, \quad R_{\xi*\eta} = R_{\xi}R_{\eta}$$

$$\longrightarrow$$
 $lconv(\Gamma) = rconv(\Gamma)' = v(\Gamma)' = u(\Gamma)'' = \mathcal{L}(\Gamma)$ (note if $T \in \mathcal{L}(\Gamma)$ then $T = L_{\xi}$ where $\xi = T\delta_e$)

 \rightarrow Fourier expansion $x = \sum_{\gamma} x_{\gamma} u_{\gamma}, \quad x_{\gamma} = \tau(x u_{\gamma^{-1}})$

Group von Neumann Algebras

Theorem (Murray-von Neumann '36)

 $\mathcal{L}(\Gamma)$ is a II_1 factor $(\mathcal{Z}(\mathcal{L}(\Gamma)) = \mathbb{C}1) \Leftrightarrow \forall \ \gamma \neq e$ we have $|\gamma^{\Gamma}| = \infty$, i.e. Γ is icc. **Examples:**

- \mathbb{F}_n , n > 2; $\Gamma_1 * \Gamma_2$, $|\Gamma_1| > 2$, $|\Gamma_2| > 3$; $PSL_n(\mathbb{Z})$, n > 2;
- \mathfrak{S}_{∞} ; $A \setminus \Gamma$, Γ infinite;

Major theme of study in von Neumann algebras

- Is it possible to develop a "rigidity theory" in this setting?
- How much information does $\mathcal{L}(\Gamma)$ "remember" of the initial group Γ ? Specifically, is it possible to identify a comprehensive list of canonical algebraic properties of Γ that are completely recognized by $\mathcal{L}(\Gamma)$?

Classification of group von Neumann algebras

Some non-results:

- (folk) if Γ, Λ infinite abelian then $\mathcal{L}(\Gamma) \cong \mathcal{L}(\Lambda) \cong \mathcal{L}^{\infty}([0,1])$
- (Connes '76) if Γ , Λ amenable icc then $\mathcal{L}(\Gamma) \cong \mathcal{L}(\Lambda) \cong \overline{\bigcup_n \mathcal{M}_{2^n}(\mathbb{C})}^{SOT} = \mathcal{R}$ the hyperfinite factor

Concrete examples: $\mathcal{L}(\mathbb{Z} \wr \mathbb{Z}) \cong \mathcal{L}(\mathbb{Z}_2 \wr \mathbb{Z}) \cong \mathcal{L}(\mathfrak{S}_{\infty})$

• (Dykema '93) if Γ_i , Λ_i are infinite amenable then

$$\mathcal{L}(\Gamma_1 * \Gamma_2 * \cdots * \Gamma_n) \cong \mathcal{L}(\Lambda_1 * \Lambda_2 * \cdots * \Lambda_n)$$

parallel similar results in orbit equivalence, e.g. (Dye '59, Ornstein-Weiss '81, Gaboriau '05)

Conclusion: In general, no memory of the classical group invariants such as torsion, rank, generators and relations, etc.

Classification of group of von Neumann algebras

Rigidity in grou von Neumann algebra

I. CHIFAI

von Neumar algebras

Main results

Some results:

- (Murray-von Neumann '43) $\mathcal{L}(\mathbb{F}_2) \ncong \mathcal{L}(\mathfrak{S}_{\infty} \times \mathbb{F}_2)$
- (McDuff '69) Infinitely many non isomorphic group factors
- (Cowling-Haagerup '89) If $\Gamma < Sp(n,1)$, $\Lambda < Sp(m,1)$ lattices and $n \neq m$ then $\mathcal{L}(\Gamma) \ncong \mathcal{L}(\Lambda)$
- (Ozawa '03) if Γ icc hyperbolic then $\mathcal{L}(\Gamma) \ncong \mathcal{L}(\Lambda \times \Theta)$, for every Λ, Θ infinite groups Using Popa's deformation/rigidity theory:
- $\mathcal{L}(\Gamma_1 *_{\Sigma} \Gamma_2 *_{\Sigma} \cdots *_{\Sigma} \Gamma_n) \cong \mathcal{L}(\Lambda_1 *_{\Omega} \Lambda_2 *_{\Omega} \cdots *_{\Omega} \Lambda_m)$ implies n = m and there exists $\sigma \in \mathfrak{S}_n$ such that $\mathcal{L}(\Gamma_i) \cong \mathcal{L}(\Lambda_{\sigma_i})$; known when Σ, Ω amenable and Γ_i, Λ_i are
 - o infinite property (T) groups, (Ioana-Peterson-Popa '05)
 - onnon-amenable direct products of infinite groups (C -Houdayer '10)
 - on non-amenable containing infinite normal amenable subgroups and Σ, Ω finite (loana '12)
- (Ozawa-Popa '07) If $L(\mathbb{F}_n) \cong L(\Lambda)$ then \forall infinite amenable subgroup $\Sigma < \Lambda$ the normalizer $N_{\Lambda}(\Sigma)$ is amenable
- (loana-Popa-Vaes '10) if Γ is non-amenable, $I = \Gamma \wr \mathbb{Z}/\mathbb{Z}$, and $\mathcal{L}(\mathbb{Z}_3 \wr_I (\Gamma \wr \mathbb{Z})) \cong \mathcal{L}(\Lambda)$ then $\mathbb{Z}_3 \wr_I (\Gamma \wr \mathbb{Z}) \cong \Lambda$; other wreath products by (Berbec-Vaes '13)

Unique prime factorization for group von Neumann algebras

Rigidity in group von Neumann algebra

I. CHIFAN

von Neumar algebras

Main result

IVIAIII ICSUI

Theorem (Ozawa-Popa, '03)

Let Γ_i, Λ_j be icc hyperbolic groups (e.g. \mathbb{F}_k , $k \geq 2$). If

$$\mathcal{L}(\Gamma_1 \times \Gamma_2 \times \cdots \times \Gamma_n) \cong \mathcal{L}(\Lambda_1 \times \Lambda_2 \times \cdots \times \Lambda_m)$$

then n=m and there exist scalars $t_1t_2\cdots t_n=1$ and a permutation $\sigma\in\mathfrak{S}_n$ such that

$$\mathcal{L}(\Gamma_i)^{t_i} \cong \mathcal{L}(\Lambda_{\sigma_i}), \text{ for all } 1 \leq i \leq n$$

- the result still holds for all icc biexact groups; includes:
 - all groups hyperbolic relative to families of amenable subgroups
 - Z \ Γ, for every Γ non-elementary hyperbolic
 - $\mathbb{Z}^2 \times SL_2(\mathbb{Z})$
- we cannot do better at the factors level; by Voiculescu's formula $\mathcal{L}(\mathbb{F}_5 \times \mathbb{F}_3) \cong \mathcal{L}(\mathbb{F}_2 \times \mathbb{F}_9)$
- this parallels results of (Monod-Shalom '06) in orbit equivalence

Direct product rigidity

Rigidity in grou von Neumann algebra

I. CHIFA

von Neuma algebras

Main results

Traini result

Theorem (C - De Santiago-Sinclair, '15)

Let Γ_i be icc hyperbolic groups (or more generally nonamenable biexact) and Λ be an arbitrary group. If

$$\mathcal{L}(\Gamma_1 \times \Gamma_2 \times \cdots \times \Gamma_n) \cong \mathcal{L}(\Lambda)$$

then $\Lambda = \Lambda_1 \times \Lambda_2 \times \cdots \times \Lambda_n$ and there exist scalars $t_1 t_2 \cdots t_n = 1$ such that

$$\mathcal{L}(\Gamma_i)^{t_i} \cong \mathcal{L}(\Lambda_i)$$
, for all $1 \leq i \leq n$

• a contrast point with the OE counterpart (Monod-Shalom '06) is no need to assume strong forms of ergodicity on the "target data"

Corollary

Let Γ_i be icc biexact nonamenable groups and Λ be an arbitrary group such that

$$\mathbb{C}_r^*(\Gamma_1 \times \Gamma_2 \times \cdots \times \Gamma_n) \cong \mathbb{C}_r^*(\Lambda).$$

Then $\Lambda = \Lambda_1 \times \Lambda_2 \times \cdots \times \Lambda_n$ where Λ_i are icc, nonamenable groups.

Infinite direct product rigidity

Rigidity in grou von Neumann algebra

I. CHIFAI

von Neumai algebras

Main results

viaiii iesui

• Unique prime factorization results for infinite tensor products of solid factors were obtained by (Isono '16); motivated by these results we can ask the following basic question:

Can we get a similar product rigidity result for infinite direct sum groups?

• Canonical obstruction:

$$\mathcal{L}(\oplus_{i\in\mathbb{N}}\Gamma_i) \cong \bar{\otimes}_{i\in\mathbb{N}}\mathcal{L}(\Gamma_i)$$

$$\cong \bar{\otimes}_{i\in\mathbb{N}}\mathcal{L}(\Gamma_i)^{1/2} \otimes \mathcal{M}_2(\mathbb{C}))$$

$$\cong (\bar{\otimes}_{i\in\mathbb{N}}\mathcal{L}(\Gamma_i)^{1/2})\bar{\otimes}\mathcal{R}$$

$$\cong (\bar{\otimes}_{i\in\mathbb{N}}\mathcal{L}(\Gamma_i)^{1/2})\bar{\otimes}\mathcal{R}\bar{\otimes}\mathcal{R}$$

$$\cong (\bar{\otimes}_{i\in\mathbb{N}}\mathcal{L}(\Gamma_i))\bar{\otimes}\mathcal{R}$$

$$\cong \mathcal{L}(\oplus_{i\in\mathbb{N}}\Gamma_i \oplus A),$$

for any A icc amenable group.

Infinite direct product rigidity

Rigidity in group von Neumann algebra

I. CHIFAI

von Neum algebras

Main results

Theorem (C - Udrea, '18)

Let $(\Gamma_i)_{i\in\mathbb{N}}$ be icc, biexact, property (T) groups and let Λ be an arbitrary group such that

$$\mathcal{L}(\Gamma_1 \oplus \Gamma_2 \oplus \cdots \oplus \Gamma_n \oplus \cdots) \cong \mathcal{L}(\Lambda).$$

Then $\Lambda = (\Lambda_1 \oplus \Lambda_2 \oplus \cdots \oplus \Lambda_n \oplus \cdots) \oplus A$ where A is icc amenable. Also there are positive scalars $t_1, t_2, ..., t_n, ...$ so that for each $k \in \mathbb{N}$ we have

$$\mathcal{L}(\Gamma_1)^{t_1} \cong \mathcal{L}(\Lambda_1), \quad \mathcal{L}(\Gamma_2)^{t_2} \cong \mathcal{L}(\Lambda_2), \quad \dots \quad \mathcal{L}(\Gamma_k)^{t_k} \cong \mathcal{L}(\Lambda_k),$$

 $\mathcal{L}(\Gamma_{k+1} \oplus \Gamma_{k+2} \oplus \dots) \cong \mathcal{L}((\Lambda_{k+1} \oplus \Lambda_{k+2} \oplus \dots) \oplus A)$

- the result applies to all Γ_i 's
 - uniform lattices in Sp(n,1), $n \ge 2$
 - Gromov random groups with density $3^{-1} < d < 2^{-1}$
 - prop (T), hyperbolic relative to finitely generated amenable groups constructed by (Arzhantseva-Minasyan-Osin '07)

Infinite direct product rigidity in \mathbb{C}^* -setting

Corollary

Let $(\Gamma_i)_{i\in\mathbb{N}}$ be icc, biexact, property (T) groups and let Λ be an arbitrary group such that

$$\mathbb{C}_r^*(\Gamma_1 \oplus \Gamma_2 \oplus \cdots \oplus \Gamma_n \oplus \cdots) \cong \mathbb{C}_r^*(\Lambda).$$

Then $\Lambda = \Lambda_1 \oplus \Lambda_2 \oplus \cdots \oplus \Lambda_n \oplus \cdots$ where Λ_i are icc, biexact, property (T) groups.

Proof. $\bigoplus_{i \in \mathbb{N}} \Gamma_i$ has trivial amenable radical and by (Breuillard-Kalantar-Kennedy-Ozawa '14) $\mathbb{C}_r^*(\oplus_{i\in\mathbb{N}}\Gamma_i)$ has unique trace; thus the isomorphism $\mathbb{C}_r^*(\oplus_{i\in\mathbb{N}}\Gamma_i)\cong\mathbb{C}_r^*(\Lambda)$ preserves the trace and hence lifts to the von Neumann algebras level and it follows from the previous theorem that $\Lambda = \bigoplus_{i \in \mathbb{N}} \Lambda_i \oplus A_i$; however by uniqueness of the trace again (BKKO '14) implies that A = 1

Amalgamated free product rigidity

Rigidity in group von Neumann algebra

I. CHIFAI

von Neuma algebras

Main results

O...-4:---

Theorem (C - Ioana '17)

Let $\Gamma = \Gamma_1 *_{\Sigma} \Gamma_2$ be an amalgam satisfying the following:

- $\Gamma_1 = \Gamma_1^1 \times \Gamma_1^2$, $\Gamma_2 = \Gamma_2^1 \times \Gamma_2^2$ where Γ_i^j , are icc, non-amenable, biexact groups;
- Σ is icc amenable and $[\Sigma : \gamma \Sigma \gamma^{-1} \cap \Sigma] = \infty$ for every $\gamma \in \Gamma_i \setminus \Sigma$.

Assume Λ is an arbitrary group such that

$$\mathcal{L}(\Gamma_1 *_{\Sigma} \Gamma_2) = \mathcal{L}(\Lambda).$$

Then $\Lambda = \Lambda_1 *_{\Delta} \Lambda_2$ and there exists $u \in \mathcal{U}(\mathcal{L}(\Gamma))$ s.t.

$$\mathcal{L}(\Lambda_1) = u\mathcal{L}(\Gamma_1)u^*, \quad \mathcal{L}(\Lambda_2) = u\mathcal{L}(\Gamma_2)u^*, \quad \mathcal{L}(\Delta) = u\mathcal{L}(\Sigma)u^*.$$

Examples:

- $(H_1 * \Theta) \times (K_1 * \Omega)] *_{(\Theta \times \Omega)} [(H_2 * \Theta) \times (K_2 * \Omega)] \quad \forall H_i, K_i biexact, \Theta, \Omega icc, amenable$
- $(A \wr H) \times (A \wr H)] *_{(A \wr C \times A \wr C)} [(A \wr H) \times (A \wr H)] \quad \forall H \text{ hyperbolic, } C < H \text{ max. inf. amenable}$

W^* -superrigidity

Rigidity in grou von Neumann algebra

I. CHIFA

von Neumai algebras

Main results

. ...

Theorem (C - Ioana '17)

Let $\Sigma < \Gamma_0$ be groups satisfying the following

- Γ₀ be icc, non-amenable, biexact;
- Σ is icc, amenable, and satisfies $[\Sigma : \Sigma \cap \gamma \Sigma \gamma^{-1}] = \infty$ for every $\gamma \in \Gamma_0 \setminus \Sigma$;
- the centralizer in Γ_0 of any finite index subgroup of $\Sigma \cap \gamma \Sigma \gamma^{-1}$ is trivial, for all $\gamma \in \Gamma_0$.

Let
$$\Gamma := (\Gamma_0 \times \Gamma_0) *_{diag(\Sigma)} (\Gamma_0 \times \Gamma_0)$$
.

If Λ is an any group and $\theta: \mathcal{L}(\Gamma) \to \mathcal{L}(\Lambda)$ is any *-isomorphism then there exist a group isomorphism $\delta: \Gamma \to \Lambda$ a unitary $\mathbf{a} \in \mathcal{L}(\Lambda)$, and a character $\eta: \Gamma \to \mathbb{T}$ such that

$$\theta(u_{\gamma}) = \eta(\gamma) a v_{\delta(\gamma)} a^*, \quad \forall \gamma \in \Gamma.$$

Examples

- there are uncountably many groups □
- $[(\mathfrak{S}_{\infty} \wr \mathbb{F}_n) \times (\mathfrak{S}_{\infty} \wr \mathbb{F}_n)] *_{diag(\mathfrak{S}_{\infty} \wr \mathbb{Z})} [(\mathfrak{S}_{\infty} \wr \mathbb{F}_n) \times (\mathfrak{S}_{\infty} \wr \mathbb{F}_n)]$ $n \geq 2$

Applications to \mathbb{C}^* -superrigidity

Rigidity in grou von Neumann algebra

I. CHIFAN

von Neun algebras

Main result

Corollary (C - Ioana '17)

Let $\Sigma < \Gamma_0$ be groups satisfying the following

- Γ₀ be icc, non-amenable, biexact;
- Σ is icc, amenable, and satisfies $[\Sigma : \Sigma \cap \gamma \Sigma \gamma^{-1}] = \infty$ for every $\gamma \in \Gamma_0 \setminus \Sigma$;
- the centralizer in Γ_0 of any finite index subgroup of $\Sigma \cap \gamma \Sigma \gamma^{-1}$ is trivial, for all $\gamma \in \Gamma_0$.

Let
$$\Gamma := (\Gamma_0 \times \Gamma_0) *_{diag(\Sigma)} (\Gamma_0 \times \Gamma_0)$$
.

If Λ is an any group and $\theta: \mathbb{C}^*_r(\Gamma) \to \mathbb{C}^*_r(\Lambda)$ is any *-isomorphism then there exist a group isomorphism $\delta: \Gamma \to \Lambda$ a unitary $\mathbf{a} \in \mathcal{L}(\Lambda)$, and a character $\eta: \Gamma \to \mathbb{T}$ such that

$$\theta(u_{\gamma}) = \eta(\gamma) a v_{\delta(\gamma)} a^*, \quad \forall \gamma \in \Gamma.$$

• this provide the first examples of non-amenable C*-superrigid groups; the only other known examples by (Scheinberg '74, Knuby-Raum-Thiel-White '17, Eckhart-Raum '18, Omland '18)

Wreath product rigidity

Theorem (C - Udrea '18)

- Let H, Γ_1, Γ_2 icc, biexact, property (T) groups;

Let Λ be an arbitrary group and let $\theta: \mathcal{L}(H \wr \Gamma) \to \mathcal{L}(\Lambda)$ be a *-isomorphism. Then

• Σ, Ψ icc, property (T) groups, A icc amenable, an action $\Psi \curvearrowright^{\alpha} A$ such that $\Lambda = (\Sigma^{(\Psi)} \oplus A) \rtimes_{\beta \oplus \alpha} \Psi$, where $\Psi \curvearrowright^{\beta} \Sigma^{(\Psi)}$ is the Bernoulli action.

Also there is a group isomorphism $\delta: \Gamma \to \Psi$, a character $\eta: \Gamma \to \mathbb{T}$, a *-isomorphism $\theta_0: \mathcal{L}(H^{(\Gamma)}) \to \mathcal{L}(\Sigma^{(\Psi)} \oplus A)$, and a unitary $a \in \mathcal{L}(\Lambda)$ such that for all $x \in \mathcal{L}(H^{(\Gamma)})$, $\gamma \in \Gamma$ we have

$$\theta(xu_{\gamma}) = \eta(\gamma)a\theta_0(x)v_{\delta(\gamma)}a^*.$$

Corollary (C - Udrea '18)

Let H, Γ_1, Γ_2 be icc, biexact, property (T) groups and let $\Gamma = \Gamma_1 \times \Gamma_2$. If Λ is an arbitrary group so that $\mathbb{C}_r^*(H \wr \Gamma) = \mathbb{C}_r^*(\Lambda)$ then $\Lambda = \Sigma \wr \Gamma$, where Σ is an icc, property (T) group.

Ideas behind the proof of the infinite direct product rigidity

Questions

Rigidity in grou von Neumann algebra

I. CHIFAI

algebras

Main results

Open Problem

Does infinite product rigidity still hold if one removes the property (T) assumption (i.e. for infinite direct sum of icc non-amenable biexact groups)?

Open Problem

Are there any instances when the plain free product rigidity holds?

$$L(\Gamma_1 * \Gamma_2) = L(\Lambda) \stackrel{?}{\Rightarrow} \Lambda = \Lambda_1 * \Lambda_2 \text{ and } L(\Lambda_i) \cong L(\Gamma_i) \text{ for all } i = 1, 2.$$

Open Problem

Identify other algebraic features that are recognizable from von Neumann algebras. Examples: a) fiber products (C- Das '18), b) HNN-extensions, $HNN(\Gamma, \Sigma, \theta)$, c) graph products $\mathcal{G}(\Gamma_v, v \in \mathcal{V})$?

Open Problem

Is there a hyperbolic group Γ s.t. whenever Λ is a group satisfying $\mathcal{L}(\Gamma) \cong \mathcal{L}(\Lambda)$ it follows that Λ is hyperbolic as well?

Rigidity in group von Neumann algebra

I. CHIFAN

von Neumar algebras

Main results

Questions

THANK YOU!

Step 1: let
$$\{\gamma: \gamma \in \Gamma\}'' = \mathcal{L}(\bigoplus_{i \in I} \Gamma_i) = M = \mathcal{L}(\Lambda) = \{\lambda: \lambda \in \Lambda\}'' \longrightarrow (\text{Popa-Vaes}) \text{ co-multiplication along } \Lambda \text{ i.e. } \Delta: M \to M \bar{\otimes} M \text{ given by } \Delta(\lambda) = \lambda \otimes \lambda \longrightarrow \forall i, j \in I \text{ we have } \Delta(\mathcal{L}(\Gamma_{I \setminus \{i\}})), \Delta(\mathcal{L}(\Gamma_i)) \subseteq \Delta(M) \subseteq M \bar{\otimes} M = M \bar{\otimes} \mathcal{L}(\Gamma_{I \setminus \{j\}} \oplus \Gamma_j) \text{ using } (\text{Popa-Vaes '12}) \text{ control of normalizers } \Rightarrow$$

$$\Delta(\mathcal{L}(\Gamma_{I\setminus\{i\}})) \prec M \bar{\otimes} \mathcal{L}(\Gamma_{I\setminus\{j\}}) \quad \text{or} \quad \Delta(\mathcal{L}(\Gamma_i)) \prec M \bar{\otimes} \mathcal{L}(\Gamma_{I\setminus\{j\}})$$

However, if $\Delta(\mathcal{L}(\Gamma_i)) \prec M \bar{\otimes} \mathcal{L}(\Gamma_{I \setminus \{j\}})$ for all j then $\Delta(\mathcal{L}(\Gamma_i)) \prec M \bar{\otimes} \mathcal{L}(\Gamma_{I \setminus F})$ for all $F \subset I$ finite; it follows that $\Delta(\mathcal{L}(\Gamma_i))$ is amen. rel. to $M \bar{\otimes} 1$ forcing Γ_i amenable, contradiction; hence $\forall i, \exists j$ so that

$$\Delta(\mathcal{L}(\Gamma_{I\setminus\{i\}})) \prec M \bar{\otimes} \mathcal{L}(\Gamma_{I\setminus\{j\}})$$

Ideas behind the proof — Infinite direct product rigidity

Rigidity in group von Neumann algebra

I. CHIFAI

supplemental³. Step 2:
$$||E_{M\bar{\otimes}\mathcal{L}(\Gamma_{I\setminus\{i\}})}(\Delta(u))||_2 \geq C > 0$$
 for all $u \in \mathcal{U}(L(\Gamma_{I\setminus\{i\}}))$

- \hookrightarrow (ultrapower tech loana '11) let $\mathcal{G} = \{\Sigma : \Sigma \leqslant \Lambda\}$ and \mathcal{J} the directed set of all small sets over \mathcal{G}
- \leadsto if $\mathcal{L}(\Gamma_{I\setminus\{i\}}) \not\prec \mathcal{L}(\Sigma)$ for all $\Sigma \in \mathcal{G}$ then for each $S \in \mathcal{J}$ there exists $\lambda_S \in \Lambda \setminus S$ such that

$$||E_{\mathcal{L}(\Gamma_{I\setminus\{j\}})}(\lambda_S)||_2 \geq C/2$$

- \longrightarrow if ω is cofinal ultrafilter on \mathcal{J} then $\mathcal{E}_{\mathcal{L}(\Gamma_{I\backslash\{i\}})^{\omega}}(\lambda^{\omega})\neq 0$ where $\lambda^{\omega}=(\lambda_{S})_{S}$
- $ightharpoonup \operatorname{\mathsf{Assume}}:\ \lambda^\omega \in \mathcal{L}(\Gamma_{I\setminus\{j\}})^\omega \subseteq \mathcal{L}(\Gamma_j)'\cap M^\omega \Rightarrow \mathcal{L}(\Gamma_j) \subseteq \lambda^\omega M(\lambda^\omega)^{-1}\cap M = \mathcal{L}(\lambda^\omega \Lambda(\lambda^\omega)^{-1}\cap \Lambda)$
- $\longrightarrow \lambda^{\omega} \Lambda(\lambda^{\omega})^{-1} \cap \Lambda = \bigcup_n C(\Sigma_n)$ where $\Sigma_n \notin \mathcal{G}$, descending
- \leadsto for all $\mathcal G$ either $\mathcal L(\Gamma_{I\setminus\{i\}})\prec\mathcal L(\Sigma)$ for some $\Sigma\in\mathcal G$ or $\mathcal L(\Gamma_j)\prec\mathcal L(\cup_n\mathcal C(\Sigma_n))$ with $\Sigma_n\notin\mathcal G$

Ideas behind the proof — Infinite direct product rigidity

Rigidity in grou von Neumann algebra

```
supplemental<sup>4</sup>. Step 3: \exists \Sigma \leqslant \Lambda s. t. \mathcal{L}(\Gamma_{I \setminus \{i\}}) \prec \mathcal{L}(\Sigma) with C(\Sigma) is non-amenable;
```

 $ightharpoonup Assume: \mathcal{L}(\Gamma_{I\setminus\{i\}})\subseteq\mathcal{L}(\Sigma)$; splitting prop of tensors $\Rightarrow \mathcal{L}(\Gamma_{I\setminus\{i\}})\bar{\otimes}B=\mathcal{L}(\Sigma)$ with $B\subseteq\mathcal{L}(\Gamma_i)$

 \rightarrow solidity of $\mathcal{L}(\Gamma_i)$ imply B is atomic, so up to corners we can assume

$$\mathcal{L}(\Gamma_{I\setminus\{i\}})=\mathcal{L}(\Sigma)$$

→ passing to relative commutants we get

$$\mathcal{L}(\Gamma_i) = \mathcal{L}(\Sigma)' \cap \mathcal{L}(\Lambda) \subseteq \mathcal{L}(vC(\Sigma))$$

where $\nu C(\Sigma) = \{\lambda \in \Lambda : |\lambda^{\Sigma}| < \infty\}$ —virtual centralizer of Σ

 \longrightarrow let $\mathcal{O}_1, \mathcal{O}_2, ...$ all finite orbits under Σ-conjug.; let $\Omega_k = \langle \mathcal{O}_1, ..., \mathcal{O}_k \rangle$ and note $\cup_k \Omega_k = v\mathcal{C}(\Sigma)$

→ using property (T) we get

$$\mathcal{L}(\Gamma_i) = \mathcal{L}(\Sigma)' \cap \mathcal{L}(\Lambda) \subseteq \mathcal{L}(\Omega_\ell)$$

hence $\mathcal{L}(\Gamma_{I\setminus\{i\}})\bar{\otimes}\mathcal{L}(\Gamma_i) = \mathcal{L}(\Sigma\vee\Omega_\ell) = \mathcal{L}(\Lambda); \Rightarrow \Sigma\vee\Omega_\ell = \Lambda \text{ and } vC(\Sigma) = \Omega_\ell$

 \longrightarrow as Σ has finite index subgroup commuting with $vC(\Sigma)$ then Λ is commensurable to a product group

Ideas behind the proof — Infinite direct product rigidity

von Neumann algebra

I CHIEAN

Step 4: "perturbing" Σ and $vC(\Sigma)$ up to finite index and using (Ozawa-Popa '03) we get that $\Lambda = \Sigma_i \oplus vC(\Sigma_i)$ and $t_i > 0$ such that

$$\mathcal{L}(\Gamma_{I\setminus\{i\}})^{t_i} = \mathcal{L}(\Sigma_i)$$
 and there is $\mathcal{L}(\Gamma_i)^{1/t_i} = \mathcal{L}(vC(\Sigma_i))$

- \rightarrow using these product decompositions for every i one derive the desired conclusion
- since the "equalities" above are up to corners and partial conjugacy all the statements above are virtual (i.e. up to finite index/intersection) and their proofs are pretty involved technically; to get to a honest direct product we often have to use factoriality of the original algebras.