Perfect bandlimited reconstruction

Friedrich Littmann

March 22, 2018

Denote by $\mathcal{B}_p(\tau)$ $(1 \le p \le 2)$ the class of entire functions $F \in L^p(\mathbb{R})$ so that

$$\widehat{F}(t) = 0, \qquad |t| > \tau.$$

Goal. Construction of bandlimited φ so that

$$\int_{\mathcal{T}} |G(x)|^p dx \le \|\varphi\|_2^2 \, \rho(T,\delta) \, \int_{\mathbb{D}} |G(x)|^p dx$$

with the Nyquist density

$$\rho(T,\delta) = \sup_{x \in \mathbb{R}} |T \cap [x, x + \delta]|.$$

(Notation: $P_TG = \chi_TG$.)

Outline

- 1. Motivation: Reconstruction of corrupted signals
- 2. Construction of φ
- 3. Multivariate generalizations

Reconstruction of noisy signals (p = 1)

Problem.

- ► F signal,
- n corrupting noise,
- ▶ Known: F + n.

Is it possible to recover F?

Modelling.

- F is an element of $\mathcal{B}_1(\tau)$
- ▶ $n \in L^1(\mathbb{R})$ is 'sparse'

Ill-posed problem without the (unspecified) sparsity condition.

Approximations

- ▶ Use the best L^1 -approximation of F + n from $\mathcal{B}_1(\tau)$ as recovery candidate.
- ▶ Notation: For $f \in L^1(\mathbb{R})$ define $f^* \in \mathcal{B}_1(\tau)$ by

$$||f - f^*||_1 \le ||f + G||_1$$

for all $G \in \mathcal{B}_1(\tau)$, if such f^* exists. (Abuse of notation; f^* not always unique.)

Sparsity. Frequently given as condition on T = supp(n) such that

$$(F+n)^*=F.$$

▶ Equivalent: Condition for $n^* \equiv 0$.

Badly approximable support

Lemma. (Logan 1965) Let $T \subseteq \mathbb{R}$. If

$$\int_{\mathcal{T}} |G| < \frac{1}{2} \|G\|_1$$

for all $G \in \mathcal{B}_1(\tau)$, then $n^* \equiv 0$ for functions with support $(n) \subseteq T$.

- ▶ Independently rediscovered by Benyamini, Kroo, Pinkus (2012)
- Related to compressed sensing

Proof

Let $G\in\mathcal{B}_1(au)$, not the zero function. By assumption $\int_{\mathcal{T}}|G|<\frac{1}{2}\int_{\mathbb{R}}|G|,$ i.e.,

$$\int_{\mathcal{T}} |G| < \int_{\mathcal{T}^c} |G|.$$

Let n have support T. Then

$$||n - G||_1 = \int_T |n - G| + \int_{T^c} |G|$$

$$\geq \int_T |n| - \int_T |G| + \int_{T^c} |G|$$

$$> \int_T |n|$$

and this is $||n||_1$. Hence none of the non-zero functions from $\mathcal{B}_1(\tau)$ gives a better approximation than the zero function.

In other words: If for some $\delta > 0$ and all $G \in \mathcal{B}_1(\tau)$

In other words. If for some
$$0 > 0$$
 and all $0 \in \mathcal{D}_1$

$$\int_{\mathcal{T}} |G(x)| dx \le C \rho(T, \delta) \int_{\mathbb{D}} |G(x)| dx,$$

(Recall: $\rho(T, \delta) = \sup_{u \in \mathbb{R}} |T \cap [u, u + \delta]|$.)

$$\int |G(x)| dx < C_0(T, \delta) \int |G(x)| dx$$

other words. If for some
$$\theta > 0$$
 and all $G \in \mathcal{B}$

then perfect reconstruction of F from F + n is possible if

 $\rho(T,\delta)<\frac{1}{2C}.$

Reconstruction of missing data, p = 2

Given $G \in \mathcal{B}_2(\tau)$ with the property that the values of G on $T \subseteq \mathbb{R}$ are missing (where T is known). Is it possible to recover G?

Donoho, Stark (1985):

$$\|P_T\|_{\mathcal{B}_2(\tau)}<1$$

implies that recovery is possible.

Missing data of $G \in \mathcal{B}_2(\tau)$: Model as $r = (I - P_T)G$, and note that

$$(I - P_T)G = (I - P_T L_\tau)G.$$

where $L_{ au}=\mathcal{F}^{-1}P_{[- au, au]}\mathcal{F}$ with the Fourier transform $\mathcal{F}.$ Then formally

$$G - (I - P_T L_\tau)^{-1} r = G - G = 0,$$

so reconstruction is (in principle) possible if

$$\|P_T L_{\tau}\|_{L^2 \to L^2} < 1.$$

(They developed an algorithm as well.) They observed

$$\|P_{\mathcal{T}}L_{\tau}\|_{L^{2}\to L^{2}}\leq \|P_{\mathcal{T}}\|_{\mathcal{B}_{2}(au)\to L^{2}},$$

hence require the operator norm on the right to be < 1.

Bounds for operator norms

Lemma. (Donoho, Logan)

$$\int_{T} |G|^{2} \leq \|\varphi\|_{2}^{2} \rho(T, 2\delta) \|G\|_{2}^{2},$$

where φ satisfies

- support of φ is contained in $[-\delta, \delta]$,
- $T_{\varphi}(G) = G * \varphi$ is a continuously invertible transformation on $\mathcal{B}_2(\tau)$ with

$$||T_{\varphi}^{-1}|| = 1.$$

Modification for p = 1:

$$\int_{\mathcal{T}} |G| \le \|\varphi\|_{\infty} \rho(\mathcal{T}, 2\delta) \|G\|_{1}$$

where φ satisfies

- support of φ is contained in $[-\delta, \delta]$,
 - $ightharpoonup T_{\varphi}(G) = G * \varphi$ is a continuously invertible transformation on $\mathcal{B}_1(\tau)$ with

$$\|T_{\omega}^{-1}\|=1.$$

$$| = 1$$

With F defined by $F = T_{\varphi}^{-1}(G)$ we have with $\chi_B = \chi_{[-\delta,\delta]}$

$$\int_{T} |G|^{2} = \int_{T} \left| \int_{\mathbb{R}} \varphi(u) F(x - u) du \right|^{2} dx$$

$$\leq \|\varphi\|_{2}^{2} \int_{T} \int_{\mathbb{R}} \chi_{B}(u) |F(x - u)|^{2} du dx$$

$$= \|\varphi\|_{2}^{2} \int_{\mathbb{R}} |F(u)|^{2} \int_{[u - \delta, u + \delta]} \chi_{T}(x) dx du$$

$$\leq \|\varphi\|_{2}^{2} \sup_{u \in \mathbb{R}} |[u, u + 2\delta] \cap T| \|G\|_{2}^{2}.$$

Question. How small can we make $\|\varphi\|_2$?

Conditions on φ

- 1. Support of φ is $\subseteq [-\delta, \delta]$,
- 2. The operator $T_{\varphi}: B_2(\tau) \to B_2(\tau)$ defined by $G \mapsto \varphi * G$ has continuous inverse,
- 3. $||T_{\varphi}^{-1}|| = 1$.

Goal. Minimize $\|\varphi\|_2$.

- ▶ Model $F = \widehat{\varphi}$, or
- ▶ Model $H = FF^{\#}$.

Lemma. (Akhiezer) If H of type 2δ is nonnegative on \mathbb{R} , then $H=FF^\#$ where F has type δ .

(Donoho and Logan: $| au| \leq 1/2$ and $2 au \in \mathbb{N}$, Littmann: arbitrary au > 0)

$$|\tau| \leq 1/2$$
; normalize $\delta = \pi$

Sufficient condition. Model $||F||_2$. Start with

$$F(x) = \int_{-1}^{1} \widehat{F}(t) \cos(\pi x t) dt.$$

Cauchy-Schwarz: Set $C(t) = \chi_{[-1,1]}(t) \cos \pi \tau t$.

$$1 = |F(\tau)|^2 \le \|\widehat{F}\|_2^2 \|C\|_2^2,$$

with equality if $\widehat{F}(t) = \cos \pi \tau t$ on [-1, 1].

F turns out to have the correct properties for $\tau \leq 1/2$; for $\tau > 1/2$ this will not produce the optimal function.

Arbitrary τ , $\delta = \pi$

Needed:

- 1. H has type 2π ,
- 2. $H(\pm \tau) = 1$,
- 3. Sufficient condition should represent $\int_{\mathbb{R}} H(x)dx$ as a sum of values over a discrete set that includes $\pm \tau$.

Hardy Space

The Hardy space $H^2(\mathbb{C}^+)$ is the vector space of functions F analytic in the upper half plane with

$$\sup_{y>0}\|F_y\|_2<\infty$$

where $F_y(x) = F(x + iy)$.

Fact. Functions $F \in H^2(\mathbb{C}^+)$ are in isometric correspondence to functions $f \in L^2(\mathbb{R})$ with

$$\widehat{f}(t) = 0$$
 if $t < 0$.

De Branges spaces

An entire function E is called Hermite-Biehler, if for $\Im z > 0$,

$$|E(z)| > |E^{\#}(z)|$$

where $E^{\#}(z) = \overline{E(\overline{z})}$. We set

$$\mathcal{H}(E) = \{F \text{ entire } : F/E, F^{\#}/E \in H^2(\mathbb{C}^+)\}.$$

We define real entire A, B by E(z) = A(z) - iB(z).

Fact. $\mathcal{H}(E)$ is a reproducing kernel Hilbert space with kernel

$$K(w,z) = \frac{B(z)A(\bar{w}) - A(z)B(\bar{w})}{\pi(z-\bar{w})}.$$

De Branges Theorem

Let \mathcal{T}_B be the set of (real) zeros of B. Then for $F \in \mathcal{H}(E)$

$$\int_{\mathbb{R}} |F(x)|^2 \frac{dx}{|E(x)|^2} = \sum_{t \in \mathcal{T}_R} \frac{|F(t)|^2}{K(t,t)}.$$

If $H = FF^{\#}$, then this becomes

$$\int_{\mathbb{R}} H(x) \frac{dx}{|E(x)|^2} = \sum_{t \in \mathcal{T}_B} \frac{H(t)}{K(t,t)}$$

Consider $E(z) = e^{-i\pi z}(z + i\gamma)$ where $\gamma > 0$. Then E is Hermite-Biehler, and E = A - iB where

$$B(z) = z \sin \pi z - \gamma \cos \pi z.$$

Happy circumstance: if $\gamma = \tau \sin \pi \tau / \cos \pi \tau$, then

$$B(\pm \tau) = 0.$$

(Need to modify E if γ is not positive.)

Drawback: $dx/|E(x)|^2$ is not Lebesgue measure.

We have

$$\frac{dx}{|E(x)|^2} = \frac{dx}{x^2 + \gamma^2}$$

Define $S(z) = H(z)(z^2 + \gamma^2)$, and note

$$\int_{\mathbb{D}} H(x) dx = \int_{\mathbb{D}} S(x) \frac{dx}{|E(x)|^2}.$$

Use the de Branges theorem on the right side to get the required quadrature formula:

Quadrature

For every $G \in \mathcal{B}_1(2\pi)$,

$$\int_{\mathbb{R}} G(x) dx = \sum_{\xi \in \mathcal{T}_{\gamma}} \left(1 - \frac{\gamma}{\pi(\xi^2 + \gamma^2) + \gamma} \right) G(\xi)$$

where \mathcal{T}_{γ} is the zero set of

$$B(z) = z \sin \pi z - \gamma \cos \pi z$$

or

$$A(z) = z\cos z + \gamma\sin z.$$

Lemma. $H = FF^{\#}$ is optimal if

 $H(\xi) = \chi_{[- au, au]}(\xi)$

for all $\xi \in \mathcal{T}_B$, and $H \ge \chi_{[-\tau,\tau]}$ on \mathbb{R} .

Interpolation

Can define an interpolation I so that

$$I(z) - \chi_{[-\tau,\tau]}(z) = B^2(z)R(z),$$

where the remainder R is a nonpositive function.

▶ R is a one-sided Laplace transform of g, where

$$\frac{1}{B^2(z)} = \int_{\mathbb{R}} e^{-zt} g(t) dt.$$

Missing case: $2\tau \in \mathbb{N}$.

- Use Poisson summation instead of the de Branges theorem
- (Selberg, 1960's)

▶ Work in the classical Paley Wiener space $PW_{2\pi}$

$$2\tau \in \mathbb{N} \colon \|\varphi\|_2^2 = 2\tau + \delta^{-1}$$

 $|\tau| \le 1/2$: $4\pi (2\pi\delta + \frac{\sin 2\pi\delta\tau}{\tau})^{-1}$

▶ arbitrary τ : more complicated expression $< 2\tau + \delta^{-1}$.

Auxiliary function for p = 1

Donoho, Logan: Define

$$M = \{ \nu \in \mathcal{M}(\mathbb{R}) : \widehat{\nu}(t) = 1/\widehat{\varphi}(t) \}$$

for $|t| \leq \tau$. Then every $\nu \in M$ is a convolution inverse of φ on $\mathcal{B}_1(\tau)$. If there exists $t_0 \in [-\tau, \tau]$ and $\nu_0 \in M$ with

$$1/|\widehat{\varphi}(t_0)| = \|\nu_0\|,$$

then $\|\nu_0\|$ (total variation) is the operator norm of T_{ω}^{-1} .

- lacktriangle They calculate the extremal element from M if $arphi=\chi_{[-\delta,\delta]}$
- Need to minimize $\|\varphi\|_{\infty}$, this has as a consequence that the characteristic function is optimal for small values of τ .

Multivariate versions (ongoing work with S. Husein)

- ▶ $H \subseteq \mathbb{R}^d$ symmetric convex body (centrally symmetric, compact, convex set with nonempty interior),
- ▶ $\mathcal{B}_p(H)$ entire functions in $L^p(\mathbb{R}^d)$ with $\widehat{F}(t) = 0$ for $t \notin H$,
- lacktriangle Support of arphi is a symmetric convex body W
- Trivial case: H and W cubes,
- ▶ Optimal answer can be computed if H and W are discs; leads to one-dimensional problem with respect to measures $|x|^{n-1}dx$