Unique Pseudo-Expectations, Dynamics, and Minimal Norms

David R. Pitts

University of Nebraska-Lincoln

Nebraska-Iowa Functional Analysis Seminar, Des Moines, IA November 5, 2016

Some Motivation

Consider

- • D a (unital) abelian C*-algebra,
- Γ a discrete group, and
- $\Gamma \ni t \mapsto \alpha_t \in Aut(\mathcal{D})$, action of Γ on \mathcal{D} .

Let $A_0 := C_c(\Gamma, \mathbb{D})$ be the (twisted) *-algebra of all finitely supported functions $h : \Gamma \to \mathbb{D}$.

In general, there are many C^* -norms on A_0 .

Question

Is there a minimal C^* norm on A_0 ?

Answer

Not usually.

An Example

The answer is no even in very elementary cases.

Example

Consider $X = \{1\}$ and $\Gamma = \mathbb{Z}$. Then \mathcal{A}_0 is set of trig polys. If η a C^* -norm on \mathcal{A}_0 , $\exists K \subseteq \mathbb{T}$ compact with card $(K) = \infty$ such that

$$\eta(h) = \sup_{w \in K} |\sum_{n \in \mathbb{Z}} h(n)w^n| \qquad (h \in \mathcal{A}_0).$$

If $K_1 \subsetneq K$ is compact and $card(K_1) = \infty$, then

$$\eta_1(h) := \sup_{w \in K_1} |\sum_{n \in \mathbb{Z}} h(n)w^n|$$

is a C^* -norm with $\eta_1(h) \leq \eta(h)$ and $\eta_1 \neq \eta$.

A Setting With a Minimal Norm

However, in some cases there is a minimal norm. Recall:

- the action of Γ dualizes to an action of Γ on the Gelfand space \hat{D} : for $t \in \Gamma$, $\hat{D} \ni \sigma \mapsto \sigma \circ \alpha_t$.
- Γ acts topologically freely on X if $\forall t \in \Gamma \setminus \{e\}$, int $\{x \in X : tx = x\} = \emptyset$.

Fact (Corollary of Theorem B Below)

Suppose Γ acts topologically freely on $\hat{\mathbb{D}}$ and let $\|\cdot\|_{red}$ be the reduced crossed product norm on $C_c(\Gamma, \mathbb{D})$. If η is any C^* -norm on $C_c(\Gamma, \mathbb{D})$, then \forall $h \in C_c(\Gamma, \mathbb{D})$

$$||h||_{red} \leq \eta(h).$$

A Related Result of Rainone on Crossed Prod's

C. Schafhauser alerted me to the following result:

Proposition (Rainone)

Let Γ be a discrete gp. acting on a C^* -algebra $\mathfrak A$. If η is a norm on $C_c(\Gamma, \mathfrak A)$ such that the cannonical conditional expectation,

$$C_c(\Gamma,\mathfrak{A})\ni f\mapsto f(1)\in\mathfrak{A}$$

is η -bounded, then $||f||_{red} \leq \eta(f)$ for all $f \in C_c(\Gamma, \mathfrak{A})$.

It's not always clear how to verify this hypothesis, so we'll go in another direction.

A General Context: Regular Inclusions

Definitions

- An *inclusion* is a pair $(\mathcal{C}, \mathcal{D})$ of unital C^* -algebras (with same unit) and \mathcal{D} abelian
- An inclusion is regular if

$$\mathcal{N}(\mathcal{C}, \mathcal{D}) := \{ \mathbf{v} \in \mathcal{C} : \mathbf{v} \mathcal{D} \mathbf{v}^* \cup \mathbf{v}^* \mathcal{D} \mathbf{v} \subseteq \mathcal{D} \}$$

has dense span in \mathbb{C} . Elements of $\mathbb{N}(\mathbb{C}, \mathbb{D})$ are *normalizers*.

• If \mathcal{D} is a MASA in \mathcal{C} , call $(\mathcal{C}, \mathcal{D})$ a MASA inclusion.

Example

If (\mathcal{D}, Γ) a C^* -dyn. system with \mathcal{D} abelian & Γ acts top. freely on $\hat{\mathcal{D}}$, then $(\mathcal{D} \rtimes_{red} \Gamma, \mathcal{D})$ is a regular MASA inclusion.

Regular MASA Inclusions appearing in Literature

Certain regular MASA inclusions have been studied:

Cartan Inclusions: A reg. MASA inclusion $(\mathfrak{C},\mathfrak{D})$ is a Cartan inclusion if there exists a faithful cond. expect. $E:\mathfrak{C}\to\mathfrak{D}.$ Defined by Renault; intended to be the C^* -analog of a Cartan MASA in a von Neumann alg.

 C^* Diagonals: An incl. $(\mathcal{C}, \mathcal{D})$ is a C^* -diagonal if it is Cartan & every pure state on \mathcal{D} extends uniquely to state on \mathcal{C} .

Introduced by Kumjian; have very nice properties.

Some Examples of Cartan & C*-Diagonals

Examples

- $(M_n(\mathbb{C}), D_n)$ (the prototype example of a C^* -diag.)
- $(C(\mathbb{T}) \rtimes \mathbb{Z}, C(\mathbb{T}))$, where action is irrational rotation is a C^* -diag;
- Let $1 < n \in \mathbb{N} \cup \{\infty\}$, $S := (S_1, \dots, S_n)$ be isometries generating \mathcal{O}_n and let $\mathcal{D} := \overline{\text{span}}\{ww^* : w \in \{S_{i_1} \cdots S_{i_k}\}\}$. Then $(\mathcal{O}_n, \mathcal{D})$ is Cartan, but not a C^* -diag.

A Side Problem

FACT (Archbold-Bunce-Gregson): Whenever $(\mathcal{C}, \mathcal{D})$ is an inclusion with the extension property (an EP-inclusion), \mathcal{D} is a MASA in \mathcal{C} & \exists ! conditional expectation $E: \mathcal{C} \to \mathcal{D}$.

Theorem (Donsig-P., JOT 2007)

Let $(\mathfrak{C},\mathfrak{D})$ be a regular EP-inclusion with cond. expect. E. Then the left kernel $\mathcal{L}:=\{x\in\mathfrak{C}: E(x^*x)=0\}$ is an ideal, $\mathcal{L}\cap\mathfrak{D}=(0)$ and $(\mathfrak{C}/\mathcal{L},\mathfrak{D})$ is a C^* -diagonal.

The definition of C^* -diagonal leads to the following question:

Irritating Side Problem

Give an example of a regular EP-inclusion which isn't a C^* -diag (i.e. with non-faithful C.E.).

Lack of Conditional Expectation

The most studied reg. inclusions have a cond. expect., which is a very useful tool in their analysis.

A general reg. MASA inclusion $(\mathcal{C}, \mathcal{D})$ can fail to have a cond. expect. $E : \mathcal{C} \to \mathcal{D}$.

Example

Let $X:=\{z\in\mathbb{C}: \operatorname{Re}(z)\operatorname{Im}(z)=0\ \&\ |z|\leq 1\}.\ \mathbb{Z}_2 \text{ acts on }X \text{ via }z\mapsto \overline{z}.$ Put $\mathfrak{C}:=C(X)\rtimes\mathbb{Z}_2 \text{ and }\mathfrak{D}:=C(X)^c \text{ (rel. commutant)}.$

Easy computations show:

ullet (\mathcal{C}, \mathcal{D}) is a reg. MASA inclusion, but $\not\exists$ a C.E. $E: \mathcal{C} \to \mathcal{D}$.

We'll need a replacement for conditional expectations.

Injective Envelopes & The Dixmier Algebra

For an abelian C^* -algebra \mathfrak{D} , $(I(\mathfrak{D}), \iota)$ is an *injective envelope* for \mathfrak{D} , if

- $I(\mathfrak{D})$ an injective C^* -algebra,
- $\iota: \mathcal{D} \to I(\mathcal{D})$ a *-monomorphism; &
- if $J \subseteq I(\mathcal{D})$ an ideal with $J \cap \iota(\mathcal{D}) = (0)$, then J = (0).

When $\mathcal{D} = C(X)$, the Dixmier algebra is

$$Dix(X) := \{Bounded Borel Ftns on X\}/N,$$

where $\mathcal{N} = \{f \text{ bdd, Borel} : \{x \in X : |f(x)| \neq 0\} \text{ is meager.} \}$

Theorem (Dixmier)

(Dix(X), ι), where $C(X) \ni f \mapsto \iota(f) = f + \mathbb{N}$, "is" the injective envelope for C(X).

A Replacement for Conditional Expectation

Definition

Let $(\mathfrak{C},\mathfrak{D})$ be an inclusion, & $(I(\mathfrak{D}),\iota)$ an inj. envelope for \mathfrak{D} . A pseudo-expectation for $(\mathfrak{C},\mathfrak{D})$ is a completely positive unital map $E:\mathfrak{C}\to I(\mathfrak{D})$ such that $E|_{\mathfrak{D}}=\iota$.

The injectivity of $I(\mathcal{D})$ ensures existence of E.

In general, there are many pseudo-expectations: e.g. every state on $\mathcal C$ is a pseudo-expectation for $(\mathcal C, \mathbb CI)$. However. . . .

Properties of Regular MASA Inclusions

Regular MASA inclusions have unique pseudo-expectations.

Theorem A (D.P. 2012)

If $(\mathfrak{C},\mathfrak{D})$ a regular MASA inclusion, then $\exists !$ pseudo-expectation $E:\mathfrak{C}\to I(\mathfrak{D})$ and

$$\mathcal{L}(\mathcal{C}, \mathcal{D}) := \{ x \in \mathcal{C} : E(x^*x) = 0 \}$$

is a (closed) 2-sided ideal in $\mathbb C$ with $\mathcal L(\mathbb C, \mathbb D) \cap \mathbb D = (0)$. Also, if $J \subseteq \mathbb C$ a closed ideal with $J \cap \mathbb D = (0)$, then $J \subseteq \mathcal L(\mathbb C, \mathbb D)$.

Note: When \exists a conditional expectation of $\mathfrak C$ onto $\mathfrak D$, it is the pseudo-expectation.

A Minimal Seminorm

Definition

A *skeleton* for the inclusion $(\mathcal{C}, \mathcal{D})$ is a *-submonoid $\mathcal{M} \subseteq \mathcal{N}(\mathcal{C}, \mathcal{D})$ s.t.

$$\mathfrak{D} \subseteq \operatorname{span} \mathfrak{M}$$
 and $\overline{\operatorname{span}} \mathfrak{M} = \mathfrak{C}$.

Note: span \mathcal{M} is a dense *-subalgebra of \mathcal{C} .

Example: For a C^* -dynam. sys. (\mathcal{D}, Γ) , $\{d\delta_t : d \in \mathcal{D}, t \in \Gamma\}$ is a skeleton for $(\mathcal{D} \rtimes_{red} \Gamma, \mathcal{D})$.

Theorem B

Suppose $\mathfrak M$ is a skeleton for the reg. MASA inclusion $(\mathfrak C, \mathfrak D)$. For any C^* -norm η on span $\mathfrak M$,

$$\operatorname{dist}(x,\mathcal{L}(\mathcal{C},\mathcal{D})) \leq \eta(x) \quad \forall x \in \operatorname{span} \mathcal{M}.$$

Outline of Proof of Theorem B

For any C^* -norm η on span M, let \mathcal{C}_{η} be completion, so $(\mathcal{C}_{\eta}, \mathcal{D})$ an inclusion.

- Show $\exists !$ pseudo-expectation $E_{\eta}: \mathcal{C}_{\eta} \to \mathcal{I}(\mathcal{D})$ and $E_{\eta}|_{\operatorname{span}\mathcal{M}} = E|_{\operatorname{span}\mathcal{M}}.$ Proof is similar to showing uniqueness of $E: \mathcal{C} \to \mathcal{I}(\mathcal{D})$. (More on this later.)
- For $x \in \text{span } \mathcal{M}$, $\text{dist}(x, \mathcal{L}(\mathcal{C}, \mathcal{D})) = ||\pi_E(x)||$, where π_E is Steinspring rep'n for E.
- Finally, for $x \in \operatorname{span} \mathfrak{M}$, $\operatorname{dist}(x, \mathcal{L}(\mathcal{C}, \mathcal{D})) = \|\pi_{E}(x)\| = \|\pi_{E_{n}}(x)\| \leq \eta(x).$

Virtual Cartan Inclusions

A virtual Cartan inclusion is a reg. MASA incl'n such that $\mathcal{L}(\mathcal{C},\mathcal{D})=$ (0) (i.e. E faithful).

Virtual Cartan inclusions have a uniqueness property:

Fact

Let $(\mathfrak{C}, \mathfrak{D})$ be a regular MASA incl'n. TFAE:

- \bullet (\mathcal{C}, \mathcal{D}) a virtual Cartan incl'n;
- ② whenever $\pi: \mathcal{C} \to \mathcal{B}(\mathcal{H})$ is a rep'n and $\pi|_{\mathcal{D}}$ is faithful, then π is faithful on \mathcal{C} .

Every Cartan incl'n & every C^* -diag is a virtual Cartan incl'n. (Also various graph algebras are virtual Cartan inclusions.)

Some Nice Features of Virtual Cartan Inclusions

Theorem

If $(\mathfrak{C}, \mathfrak{D})$ is vir. Cartan, then \mathfrak{D} norms \mathfrak{C} .

Unique faithful pseudo-expectation leads to:

Theorem

Let $(\mathcal{C}, \mathcal{D})$ be a virtual Cartan incl.. If $\mathcal{A} \subseteq \mathcal{C}$ is a closed subalgebra (not nec. *) with $\mathcal{D} \subseteq \mathcal{A}$, then $C^*_{env}(\mathcal{A}) = C^*(\mathcal{A}) \subseteq \mathcal{C}$.

Theorem

Suppose $(\mathfrak{C}_i,\mathfrak{D}_i)$ are vir. Cartan & $\mathcal{A}_i\subseteq\mathfrak{C}_i$ are subalg's s.t. $\mathfrak{D}_i\subseteq\mathcal{A}_i$. If $u:\mathcal{A}_1\to A_2$ is an isometric isomorphism, $\exists !*$ -iso $\tilde{u}:C^*(\mathcal{A}_1)\to C^*(\mathcal{A}_2)$ extending u.

Building Virtual Cartan Incl'ns from Reg. MASA Incl'ns

Let $(\mathcal{C}, \mathcal{D})$ be a regular MASA inclusion. Recall that $\mathcal{D} \cap \mathcal{L}(\mathcal{C}, \mathcal{D}) = (0)$, so $(\mathcal{C}/\mathcal{L}(\mathcal{C}, \mathcal{D}), \mathcal{D})$ is a regular inclusion.

Unclear if \mathcal{D} a MASA in $\mathcal{C}/\mathcal{L}(\mathcal{C}, \mathcal{D})$. But letting \mathcal{D}^c be relative commutant of \mathcal{D} in $\mathcal{C}/\mathcal{L}(\mathcal{C}, \mathcal{D})$, get

Theorem

Suppose $(\mathfrak{C}, \mathfrak{D})$ a regular MASA inclusion. Then

- \mathbb{D}^c is abelian, & $(\mathbb{C}/\mathcal{L}(\mathbb{C}, \mathbb{D}), \mathbb{D}^c)$ is a virtual Cartan inclusion.
- ② If \exists a cond. expect. $E : \mathcal{C} \to \mathcal{D}$, then $\mathcal{D} = \mathcal{D}^c$ & $(\mathcal{C}/\mathcal{L}(\mathcal{C},\mathcal{D}),\mathcal{D})$ is a Cartan inclusion.

Maximal & Minimal Norms on Virtual Cartan Inclusions

Corollary of Theorem B

If $(\mathfrak{C},\mathfrak{D})$ is a virtual Cartan incl'n and \mathfrak{M} is a skeleton, then $\|\|$ is the minimal C^* -norm on span \mathfrak{M} .

Moreover, there exists a maximal C^* -norm $\|\cdot\|_{max}$ on span \mathfrak{M} .

Tempting to say that the virtual Cartan incl'n $(\mathfrak{C}, \mathfrak{D})$ is amenable if $\|\cdot\|_{min} = \|\cdot\|_{max}$:

Question

The family $\{\theta_{v^*}: v \in \mathcal{N}(\mathcal{C}, \mathcal{D})\}$ is an inverse semigroup acting as partial automorphisms of \mathcal{D} . Is there a notion of amenable action for inverse semigroups which ensures that $\|\cdot\|_{min} = \|\cdot\|_{max}$ precisely when the action is amenable?

Application to Dynamical Systems

Consider the reduced crossed prod. $\mathcal{D} \rtimes_{red} \Gamma$ where \mathcal{D} abelian & Γ discrete.

Theorem (Pitts, '12)

 $(\mathfrak{D} \rtimes_{red} \Gamma, \mathfrak{D})$ is a virtual Cartan inclusion iff $\forall \sigma \in \hat{\mathfrak{D}}$, the germ isotropy group

$$H^{\sigma} := \{ s \in \Gamma : \sigma \in (Fix(s))^{\circ} \}$$

is abelian.

So, if Γ acts topologically freely on $\hat{\mathbb{D}}$, then $\forall \sigma \in \hat{\mathbb{D}}$, $H^{\sigma} = \{e\}$.

Corollary

If H^{σ} is abelian for all $\sigma \in \hat{\mathbb{D}}$, then the reduced crossed product norm is the smallest C^* -norm on span $\{d\delta_t : t \in \Gamma, d \in \mathbb{D}\}$.

Another Application: Unique Extensions

Recall $(\mathfrak{C}, \mathfrak{D})$ has extension property (EP) if every $\sigma \in \hat{\mathfrak{D}}$ extends uniquely to $\tilde{\sigma} \in \text{State}(\mathfrak{C})$. Quotients inherit the EP:

Fact (Archbold-Bunce-Gregson)

If $(\mathfrak{C},\mathfrak{D})$ is an EP-inclusion, & $J\subseteq\mathfrak{C}$ is an ideal, then $(\mathfrak{C}/J,\,\mathfrak{D}/(\mathfrak{D}\cap J))$ is EP.

We can go the other way too:

Theorem

Let $\mathfrak M$ be a skeleton for the reg. MASA incl'n $(\mathfrak C, \mathfrak D)$ & let η be a C^* -norm on span $\mathfrak M$. If $(\mathfrak C, \mathfrak D)$ has EP, so does $(\mathfrak C_\eta, \mathfrak D)$.

Theorem holds for C^* -seminorms too.

Uniqueness of Pseudo-expecations

We now discuss the key ideas in the proof of

Theorem A

If $(\mathfrak{C},\mathfrak{D})$ a regular MASA inclusion, then $\exists !$ pseudo-expectation $E:\mathfrak{C}\to I(\mathfrak{D})$ and

$$\mathcal{L}(\mathcal{C}, \mathcal{D}) := \{ x \in \mathcal{C} : E(x^*x) = 0 \}$$

is a (closed) 2-sided ideal in $\mathbb C$ with $\mathcal L(\mathbb C, \mathbb D) \cap \mathbb D = (0)$. Also, if $J \subseteq \mathbb C$ a closed ideal with $J \cap \mathbb D = (0)$, then $J \subseteq \mathcal L(\mathbb C, \mathbb D)$.

The ideas highlight relationship between partial actions on \mathcal{D} and properties of $I(\mathcal{D})$.

Some Dynamics for Regular Inclusions

Fact

For an inclusion $(\mathfrak{C}, \mathfrak{D})$ and $v \in \mathfrak{N}(\mathfrak{C}, \mathfrak{D})$, the map $vv^*d \mapsto v^*dv$ extends uniquely to a *-isomorphism $\theta_v : \overline{vv^*\mathfrak{D}} \to \overline{v^*v\mathfrak{D}}$ & $v\theta_v(h) = hv \quad \forall \ h \in \overline{vv^*\mathfrak{D}}$

Extending Isomorphisms of Ideals of \mathcal{D} to $I(\mathcal{D})$

Let $\mathfrak D$ be an abelian C^* -algebra. For i=1,2, let $J_i \lhd \mathfrak D$, & let $P_i=\sup_{I(\mathfrak D)}(a.\ u.\ for\ J_i)\in PROJ(I(\mathfrak D))$

be "support proj" for J_i.

If $\theta: J_1 \to J_2$ an isomorphism, $\exists !$ isomorphism

$$\tilde{\theta}: P_1I(\mathfrak{D}) \to P_2I(\mathfrak{D})$$

extending θ ($\tilde{\theta} \circ \iota = \iota \circ \theta$).

Frolík's Theorem

Theorem (Frolík)

If \Im injective, abelian, C^* -algebra, $P, Q \in PROJ(\Im)$ & $\alpha : P\Im \to Q\Im$ is a *-iso. Then $\exists \{R_i\}_{i=0}^3 \subseteq PROJ \Im$ s.t.

- **3** for i = 1, 2, 3, $R_i \alpha(R_i) = 0$.

Note: R_0 corresponds to fixed points for α and other R_i are "free parts" of α .

Frolík Decomposition for $v \in \mathcal{N}(\mathcal{C}, \mathcal{D})$: Motivation

Given $v \in \mathcal{N}(\mathcal{C}, \mathcal{D})$, let P, Q be support proj's for $\overline{vv^*\mathcal{D}}$ & $\overline{v^*v\mathcal{D}}$. Apply Frolik to $\tilde{\theta}_v : PI(\mathcal{D}) \to QI(\mathcal{D})$, get $\{R_i\}_{i=0}^3$. If we could write,

$$v = R_0 v + R_1 v + R_2 v + R_3 v, \tag{1}$$

then for any pseudo-expect, E,

$$E(v) = E(R_0v) + E(R_1v) + E(R_2v) + E(R_3v)$$

$$= E(R_0v) + E(R_1vR_1) + E(R_2vR_2) + E(R_3vR_3)$$

$$= E(R_0v) + \sum_{i=1}^{3} E(v\tilde{\theta}_v(R_i)R_i) = E(R_0v).$$

But products in (1) not defined!

Frolík Decomposition

Put

$$K_i := \{d \in \mathcal{D} : \iota(d)R_i = \iota(d)\} \quad (i = 0, ..., 3)$$

 $K_4 := \{d \in \mathcal{D} : vv^*d = 0\}.$

Then K_i pairwise disjoint closed ideals in $\mathfrak D$ and

- $K := \bigvee_{i=0}^4 K_i$ an essential ideal in \mathcal{D} ;
- ② for $i = 1, 2, 3, 4, \& h, k \in K_i$, hvk = 0;
- of for $d \in K_0$, $dv = vd \in \mathcal{D}$ (requires $(\mathcal{C}, \mathcal{D})$ a MASA incl'n).

So instead of (1) we think of v decomposed as

$$v = K_0 v + K_1 v + K_2 v + K_3 v$$
.

Uniqueness of Pseudo-Expectations

$$(\mathcal{C}, \mathcal{D})$$
 a reg. MASA incl., $v \in \mathcal{N}(\mathcal{C}, \mathcal{D})$
Let E_1, E_2 be pseudo-expectations,
 $K_i v K_i = 0, (i = 1, \dots, 4) \Rightarrow E_i (v K_i) = 0;$
 $dv = v d \in \mathcal{D} \ \forall \ d \in K_0 \Rightarrow E_1 (v d) = E_2 (v d), \ d \in K_0.$
So $E_1 = E_2$ on $\cup_{i=1}^4 K_i$ & finally
 $\bigvee_0^4 K_i$ essential $\Rightarrow E_1(v) = E_2(v).$

As span $\mathcal{N}(\mathcal{C}, \mathcal{D})$ is dense, $E_1 = E_2$.

Why $\mathcal{L}(\mathcal{C}, \mathcal{D})$ is a Right Ideal

Cauchy-Schwartz for ucp maps gives $\mathcal{L}(\mathcal{C}, \mathcal{D})$ is a left ideal.

If $(\mathcal{C}, \mathcal{D})$ has extension property, easy to show that when $v \in \mathcal{N}(\mathcal{C}, \mathcal{D})$ & $x \in \mathcal{C}$, $E(v^*xv) = v^*E(x)v$.

For a reg. MASA incl, $(\mathcal{C}, \mathcal{D})$, the products on right aren't def'nd. Rewrite this using θ_{ν} : Get

$$E(v^*xv) = \theta_v(vv^*E(x)) = \theta_v(E(vv^*x)).$$

Using Frolík ideals & regularity, can show:

$$E(v^*xv) = \tilde{\theta}_v(E(vv^*x)) \, \forall x \in \mathcal{C}.$$

So for $y \in \mathcal{L}(\mathcal{C}, \mathcal{D}), v \in \mathcal{N}(\mathcal{C}, \mathcal{D})$,

$$E(v^*y^*yv) = \tilde{\theta}_v(E(vv^*y^*y)) = \tilde{\theta}_v(\iota(vv^*)E(y^*y)) = 0,$$

so $yv \in \mathcal{L}(\mathcal{C}, \mathcal{D})$. Then regularity gives $\mathcal{L}(C, \mathcal{D})$ right-ideal.

Three Bonuses from Frolik Decompositions

The ideas involved with Frolík decompositions can be used to produce the following results.

Bonus 1

Let $(\mathfrak{C}, \mathfrak{D})$ be a regular inclusion with \mathfrak{D} injective. Then $(\mathfrak{C}, \mathfrak{D})$ is an EP-inclusion $\Leftrightarrow (\mathfrak{C}, \mathfrak{D})$ is a MASA inclusion.

Bonus 2

If $(\mathfrak{C},\mathfrak{D})$ is a regular (or skeletal) MASA inclusion with \mathfrak{D} injective, then $\mathcal{L}(\mathfrak{C},\mathfrak{D}) \cap \operatorname{span} \mathcal{N}(\mathfrak{C},\mathfrak{D}) = (0)$.

Let (X, Γ) be a (discrete) dynam. system, (P, f) a projective cover for X (corresponds to injective envelope of C(X)).

Bonus 3

- **1** The action of Γ uniquely "lifts" to produce a dynam. system (P,Γ) with $f(s \cdot p) = s \cdot f(p)$ $(p \in P, s \in \Gamma)$; and
- ② (X,Γ) is topologically free $\Leftrightarrow (P,\Gamma)$ is free.

Part (1) is known (e.g. Hadwin-Paulsen), but is part (2) known?

Answering the Irritating Side Problem

Irritating Side Problem

Find example of a regular EP-inclusion with non-faithful C.E..

Let

- \mathcal{H} a Hilbert space with dim $\mathcal{H} = \aleph_0$;
- \mathfrak{D} a non-atomic MASA in $\mathfrak{B}(\mathfrak{H})$; and
- $\mathcal{C} = \overline{\mathsf{span}}^{\parallel \parallel} \mathcal{N}(\mathcal{B}(\mathcal{H}), \mathcal{D}).$

Then \mathcal{D} a MASA in \mathcal{C} & \mathcal{D} injective. Bonus 1 gives $(\mathcal{C}, \mathcal{D})$ a regular EP inclusion. (Note: $(\mathcal{B}(\mathcal{H}), \mathcal{D})$ doesn't have EP!) So:

Question (P.)

Is $E: \mathcal{C} \to \mathcal{D}$ *faithful?*

Answered by W. Johnson & V. Zarikian

Here's a (slight) modification & special case of their answer. Let $\Gamma = SL_3(\mathbb{Z}) \leftarrow$ has property (T). Action of Γ on \mathbb{R}^3 induces action of Γ on $(\mathbb{T}^3, Haar)$ which is

- meas. preserving & ergodic.
- Put $\mathcal{H} = L^2(\mathbb{T}^3) \& \mathcal{D} := \{M_f : f \in L^{\infty}(\mathbb{T}^3)\}.$
- Get unitary rep'n: $s \mapsto U_s$, where $U_s \xi = \xi \circ s^{-1}$.

Then $U_s \in \mathcal{N}(\mathcal{B}(\mathcal{H}), \mathcal{D})$, $s \in \Gamma$.

Key Observation (Johnson & Zarikian)

Property (T) & a 1985 theorem of Chou, Lau, Rosenblatt give $Proj_{\mathbb{C}1} \in C^*(\{U_s\}_{s \in \Gamma}).$

As \mathcal{C} is irreducible, $\mathcal{K}(\mathcal{H}) \subseteq \mathcal{C}$. But $\mathcal{K}(\mathcal{H}) \subseteq \ker E$, so E not faithful.

More on this Example

Remark

Bonus 2 gives

$$span(\mathcal{N}(\mathcal{B}(\mathcal{H}),\mathcal{D})) \cap \mathcal{K}(\mathcal{H}) = (0),$$

even though

$$\mathcal{K}(\mathcal{H}) \subseteq \overline{\operatorname{span}}^{\parallel \parallel}(\mathcal{N}(\mathcal{B}(\mathcal{H}), \mathcal{D})).$$

THANK YOU!