Rigidity for the von Neuman algebras of products of hyperbolic groups

Rolando de Santiago Joint work with I. Chifan and T. Sinclair

The University of Iowa

4/30/16

von Neuman Algebras

Rigidity for the von Neuman algebras of products of hyperbolic group

R. de Santiag

Definition

A von Neuman algebra M is a unital, SOT closed, *-subalgebra $M \subset B(\mathcal{H})$.

Theorem (MvN36)

 $M \subset B(\mathcal{H})$ is a von Neuman algebra iff M = M'', where $M' = \{x \in B(\mathcal{H}) : xm = mx \ \forall m \in M\}$.

We focus when M is a $type\ II_1$ factor: M is endowed with unique normal finite faithful tracial state τ , and $M' \cap M \cong \mathbb{C}$.

Group von Neuman Algebras

Rigidity for the von Neuman algebras of products of nyperbolic group

R. de Santiag

Let Γ be a (countable) group and $\mathcal{H}=\ell^2\Gamma$ the Hilbert space of all square summable sequences indexed by Γ . The *left regular representation* is defined as $\lambda:\Gamma\to\mathcal{U}(\mathcal{H})$ by

$$u_{\gamma}(\xi)(x) := \xi(\gamma^{-1}x), \ \forall \gamma, x \in \Gamma, \xi \in \mathcal{H}$$

The group von Neumann algebra $L\Gamma$ is defined as

$$L\Gamma := \{u_{\gamma}\}_{\gamma \in \Gamma}^{"} = \overline{\mathbb{C}[\Gamma]}^{\mathsf{SOT}} \subset \mathcal{B}(\mathcal{H})$$

For a discrete countable i.c.c. group $L\Gamma$ is a II₁ factor with $\tau(x) = \langle x\delta_e, \delta_e \rangle$

Let
$$\gamma^{\Gamma} = \{\omega^{-1}\gamma\omega : \omega \in \Gamma\}.$$

Definition

 Γ (discrete countable) is i.c.c. if $|\gamma^{\Gamma}| = \infty$ for all $\gamma \in \Gamma \setminus e$.

 $L\Gamma$ is a factor iff Γ is i.c.c.

 Γ (discrete countable) is hyperbolic if the geodesics on the Cayley graph give rise to a negative curvature.

- \mathbb{F}_n where $n \geq 2$,
- $\pi_1(\Sigma_g)$ with $g \geq 2$.

Pimsner-Popa Index

Rigidity for the von Neuman algebras of products of hyperbolic group

R. de Santiago

Definition

Let $P \subset M$ be an inclusion of von Neuman algebras with M a II_1 factor.

$$[M:P]^{-1} = \inf\{\|E_P(x)\|_2^2 / \|x\|_2^2 : x \in M_+\}$$

is the Pimsner-Popa index of the inclusion.

Proposition

Let $\Omega \leq \Lambda \leq \Theta$. If there are projection $p \in L\Omega$, $z \in L\Lambda' \cap L\Theta$ with $pz \neq 0$ so that $[pzL\Lambda p : pzL\Omega p] < \infty$, then $[\Lambda : \Omega] < \infty$.

Amenability and Solidity

Rigidity for the von Neuman algebras of products of hyperbolic group

R. de Santiago

Definition

 (M, τ) is amenable if there exists a state $\phi : B(L^2M) \to \mathbb{C}$ so that $\phi(xm) = \phi(mx)$ and $\phi(m) = \tau(m)$ for all $x \in B(L^2M), m \in M$.

Definition

- M is solid if for any diffuse subalgebra $P \subset M$, $P' \cap M$ is amenable.
- M is strongly solid if for any diffuse amenable subalgebra $P \subset M$, $N_M(P)'' = \{u \in \mathcal{U}(M) : uPu^* = P\}''$ is amenable.

von Neuman algebras of non-amenable hyperbolic i.c.c groups are solid (N. Ozawa '02) von Neuman alebras of non-amenable hyperbolic groups are strongly solid (I. Chifan & T. Sinclair '11)

Rigidity

Rigidity for the von Neuman algebras of products of hyperbolic group

R. de Santiago

Definition

Two groups Γ, Λ are W^* -equivalent, denoted $\Gamma \cong_{W^*} \Lambda$, if $L\Gamma \cong L\Lambda$

A natural question: Given $\Gamma \cong_{W^*} \Lambda$, what properties of the group does the algebra remember?

Theorem (Co76)

Let Γ be a discrete amenable ICC group. Then $L\Gamma \cong \mathcal{R}$, where \mathcal{R} is the hyperfinite II_1 factor.

Amenable i.c.c. groups

- ullet S_{∞} group of bijections of $\mathbb N$ with finite support
- $igoplus \left(igoplus_{\mathbb{Z}} \mathbb{Z}/(2\mathbb{Z})
 ight)
 ightarrow \mathbb{Z}$ the lamplighter group
- $\left(\bigoplus_{\mathbb{Z}}\mathbb{Z}\right)\times\mathbb{Z}$

Popa's Deformation/Rigidity

Rigidity for the von Neuman algebras of products of hyperbolic group

R. de Santiago

Definition

For $P,Q\subset M$, we say P intertwines into Q, denoted $P\preceq_M Q$, if there exists $p\in P$, $q\in Q$, p.i. $v\in M$, an injective *-homomorphism $\psi:pPp\to qQq$ so that

$$\psi(x)v = vx \quad \forall x \in pPp$$

Used by A. Ioana, S. Popa, and S. Vaes to provide examples of W^* super-rigid groups, i.e. $\Gamma \cong_{W^*} \Lambda \Rightarrow \Gamma \cong \Lambda$.

Uniqueness of Prime Decomposition

Rigidity for the von Neuman algebras of products of hyperbolic group

R de Santiago

Definition

Given t > 0, let $p \in M$ be a projection with $\tau(p) = t$. $M^t := pMp$.

Theorem (OP03)

Let $L(\Gamma_1 \times \cdots \times \Gamma_m) \cong L(\Lambda_1 \times \cdots \times \Lambda_n)$, Γ_i, Λ_j ICC hyperbolic groups, then n = m there exists t_1, \ldots, t_n , $\prod t_i = 1$ so that $L(\Lambda_i)^{t_i} \cong L(\Gamma_i)$.

Can we do better? No.

$$M\overline{\otimes}N\cong M^t\overline{\otimes}N^{1/t}$$

$$L(\mathbb{F}_2)\otimes L(\mathbb{F}_9)\cong L(\mathbb{F}_2)^{1/2}\otimes L(\mathbb{F}_9)^2\cong L(\mathbb{F}_5)\otimes L(\mathbb{F}_3)$$

Removing the symmetric assumption

Rigidity for the von Neuman algebras of products of hyperbolic groups

R. de Santiago

Theorem

Let $\Gamma = \Gamma_1 \times \cdots \Gamma_n$, Γ_i i.c.c. hyperbolic, and suppose $L\Gamma \cong L\Lambda$ for an arbitrary group Λ . Then there exists $\Lambda_1, \ldots, \Lambda_n < \Lambda$ and t_1, \ldots, t_n so that $\Lambda = \Lambda_1 \times \cdots \times \Lambda_n$, $\prod t_i = 1$ and $L(\Lambda_i) \cong L(\Gamma_i)^{t_i}$.

Theorem (Io11)

For $n \ge 2$, let $\Gamma = \prod_{i=1}^n \Gamma_i$, Γ_i ICC hyperbolic and $M = L(\Gamma)$. If $L(\Lambda) \cong M^t$ then for every nonempty family of subgroups of Λ , \mathcal{G} , there exists $1 \le \ell \le n$ so that either

- $igl) L(\hat{\Gamma_\ell})^t \preceq_{M^t} L(\Sigma) \text{ for some } \Sigma \in \mathcal{G}, \text{ or } \Sigma \in \mathcal{G}$
- $(L(\Gamma_\ell)^t \leq_{M^t} L(\cup \Omega_j), \text{ where } \Omega_j = C_\Lambda(\Sigma_j), \ \Sigma_j < \Lambda \text{ a descending sequence of subgroups not in } \mathcal{G}$

Let \mathcal{G} be all amenable subgroups Λ' of Λ with $\mathcal{C}_{\Lambda}(\Lambda')$ non amenable.

Corollary

Let $M^t = (L\Gamma)^t \cong L(\Lambda)$ as above. Then there exists a non-amenable subgroup $\Sigma < \Lambda$ with non-amenable centralizer $C_{\Lambda}(\Sigma)$.

Rigidity for the von Neuman algebras of products of hyperbolic groups

R. de Santiago

Theorem

Let M, Γ , Λ as above. Then there exists commuting, non-amenable, ICC subgroups $\Sigma_1, \Sigma_2 < \Lambda$ such that $[\Lambda : \Sigma_1 \Sigma_2] < \infty$.

R. de Santiago

Let
$$\Gamma = \Gamma_1 \times \Gamma_2$$
, $M = L\Gamma$.

Take $\Sigma < \Lambda$ s.t. $\mbox{$L\Gamma_1 \preceq L\Sigma$ with $C_\Lambda(\Sigma)$ non-amenable.}$

Upgrade intertwining to finite index inclusion

$$pL\Gamma_1p\cong Q\subset qL\Sigma q,\quad [qL\Sigma q:Q]<\infty$$

The following inclusion is also f.i.:

$$rL\Sigma \vee L(C_{\Lambda}(\Sigma))r \subset rL\Sigma \vee (L\Sigma' \cap M)r \subset rMr$$

Take
$$\Lambda > \Omega = \{\lambda \in \Lambda : |\lambda|^{\Sigma} < \infty\}.$$

$$rL\Sigma \vee (L\Sigma' \cap M)r \subset rL\Omega\Sigma r \subset rMr \Rightarrow [\Gamma : \Omega\Sigma] < \infty$$

Proof-ish part II₁

Rigidity for the von Neuman algebras of products of hyperbolic group

R. de Santiae

Upgrade $\Omega\Sigma$ to honest direct product.

- $|\Omega \cap \Sigma| < \infty$
- $\Omega = \{\lambda \in \Lambda : |\lambda|^{\Sigma} \leq K\}$
- Show each orbit isn't too large.
- Pass to finite index subgroup and play with amplification
- Induct?

Theorem

Let $\Gamma = \Gamma_1 \times \cdots \times \Gamma_n$, Γ_i i.c.c. hyperbolic, and suppose $L\Gamma^t \cong L\Lambda$ for an arbitrary group Λ . Then there exists $\Lambda_1, \ldots, \Lambda_n < \Lambda$ and t_1, \ldots, t_n so that $\Lambda = \Lambda_1 \times \cdots \times \Lambda_n$, $\prod t_i = t$ and $L(\Lambda_i) \cong L(\Gamma_i)^{t_i}$.

Questions?

Rigidity for the von Neuman algebras of products of hyperbolic groups

R. de Santiago

Thanks!

Rigidity for the von Neuman algebras of products of yperbolic groups

R. de Santiago