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Goal

Given a Borel measure µ on R, understand

L̂2(µ) = {f̂ : f ∈ L2(µ)}.

Classic examples:

1 Lebesgue measure on R:

L̂2(R) = L2(R), (Plancherel);

2 Lebesgue measure on [−1/2, 1/2]:

̂
L2(−1

2
,

1

2
) = PWπ, (Paley-Wiener);

3 (Not-so classic) purely discrete: µ =
∑

n δxn

L̂2(µ) = {AP-functions with frequencies in {xn}} (Besicovitch).

Eric Weber Fourier and Harmonic Analysis of Measures 2 / 43



Two-Weight Inequality

For a fixed measure µ, determine the measures ν for which

F : L2(µ)→ L2(ν)

1 is bounded,

2 is an isometry,

3 is unitary.

Jorgensen and Pedersen consider (3) specifically, especially ν discrete–µ is a
spectral probability measure:

‖f̂ ‖2
ν =

∑
n

|f̂ (xn)|2 =
∑
n

|〈f (t), e2πitxn〉|2 = ‖f ‖2
µ.
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Bochner’s Theorem

When is F ∈ L̂2(µ)?

1 Q: When is a function F the Fourier transform of something?
1 Note: we are not placing any restriction on the “something”.
2 A: Bochner-Schoenberg-Eberlein conditions.

2 Q: When is a function F the Fourier transform of something in L2(µ)?
1 Note: here we are a priori fixing µ.
2 A: Open.
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Other Ideas

1 Decay rates of f̂
1 Erdös et. al.
2 “Strichartz Estimates”∫

Rd

|f (x)|2dµ ' lim sup
R→∞

1

Rd−α

∫
B0(R)

|f̂ dµ(t)|2dλ.

2 Balayage
1 Beurling
2 Benedetto

3 Spectral Synthesis
4 Fourier Series in L2(µ)

1 “Mock” Fourier of Strichartz
2 Pseudo-continuable functions (Poltoratskii, Herr-W)

5 Fourier inversion (sampling theory of Strichartz)
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Two-Weight Inequalities

Definition
We say that a Borel measure ν is a Bessel measure for µ if there exists a constant
B > 0 such that for every f ∈ L2(µ), we have

‖f̂ dµ‖2
L2(ν) ≤ B‖f ‖2

L2(µ).

We say the measure ν is a frame measure for µ if there exists constants A,B > 0
such that for every f ∈ L2(µ), we have

A‖f ‖2
L2(µ) ≤ ‖f̂ dµ‖

2
L2(ν) ≤ B‖f ‖2

L2(µ).

F is an isometry if A = B = 1.
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Fourier Frames

Definition

For a finite Borel measure µ, a Fourier frame is a sequence {ωne
2πixnt}n ⊂ L2(µ)

such that there exists A,B satisfying:

A‖f ‖2
µ ≤

∑
n

|〈f , ωnexn〉µ|2 ≤ B‖f ‖2
µ.

If µ has a Fourier frame, then the measure

ν =
∑
n

|ωn|δxn

is a frame measure for µ, and

F : L2(µ)→ L2(ν)

is bounded with a Moore-Penrose inverse.
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Paley-Wiener space

For Lebesgue measure on [−1/2, 1/2]:

1 Duffin and Schaeffer (1952)
2 equivalent to the sampling problem for PWπ

1 Shannon-Whitaker-Kotelnikov (∼ 1940)
2 Beurling density, Landau inequalities

3 also equivalent to the renormalization problem in PWπ

4 solved completely by Ortega-Cerdá and Seip (2002)
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Cantor Measures

The middle-thirds Cantor set C3 and invariant measure µ3 generated by:

φ0(x) =
x

3
φ1(x) =

x + 2

3

Cantor set C4 and invariant measure µ4 generated by:

ψ0(x) =
x

4
ψ1(x) =

x + 2

4

Jorgensen and Pedersen (1998):

1 µ4 is spectral,

2 spectrum is {0, 1, 4, 5, 16, 17, 20, 21, . . . }:
3 representation of Cuntz algebra O2, spectral theory of Ruelle operators,

4 µ3 is not spectral.

Big open problem: Does µ3 have a Fourier frame?
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Beurling Dimension of Frame Measures
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Frame Measures

Theorem (Dutkay, Han, & W.)

There exist finite compactly supported Borel measures that do not admit frame
measures.

Theorem (Dutkay, Han, & W.)

If a measure µ has a Bessel/frame measure ν then it has also an atomic one.

Theorem (Dutkay, Han, & W.)

If ν is a frame measure for µ and r > 0 is sufficiently small, then {ckexk : k ∈ Zd}
is a weighted Fourier frame for µ, where xk ∈ r(k + Q) and ck =

√
ν(r(k + Q)).
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Beurling Dimension

Definition

Let Q be the unit cube Q = [0, 1)d . For a locally finite measure ν and α ≥ 0 we
define the α-upper Beurling density by

Dα(ν) := lim sup
R→∞

sup
x∈Rd

ν(x + RQ)

Rα
.

We define the (upper) Beurling dimension of ν by

dimB ν := sup{α ≥ 0 : Dα(ν) =∞}.
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Beurling Dimension

Theorem (Dutkay, Han, Sun, & W.)

Let µ be a occasionally-α-dimensional measure and suppose ν is a Bessel measure
for µ. Then Dα(ν) <∞ and so dimB ν ≤ α.

Definition

We say that a Borel measure µ is ocasionally-α-dimensional if there exists a
sequence of Borel subsets En and some constants c1, c2 > 0 such that diam(En)
decreases to 0 as n→∞,

sup
n

diam(En)

diam(En+1)
<∞

c1diam(En)α ≤ µ(En) ≤ c2diam(En)α, (n ≥ 0).
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Beurling Dimension

Shortcomings of Beurling Dimension:

1 not a complete description

2 upper bound necessary, no lower bound necessary

3 no sufficiency conditions are possible:
the dimension measures geometric concentration of the measure, but not the
precise location of large densities

4 No answer for µ3.
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Fourier Frames for µ4:
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Dilation of the Cantor-4 Set

We define a “dilated” iterated function system

Υ0(x , y) = (
x

4
,
y

2
), Υ1(x , y) = (

x + 2

4
,
y

2
)

Υ2(x , y) = (
x

4
,
y + 1

2
), Υ3(x , y) = (

x + 2

4
,
y + 1

2
).

The corresponding invariant set is C4 × [0, 1] with invariant measure µ4 × λ.
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Filters

We choose filters

M0(x , y) = H0(x , y)

M1(x , y) = e2πixH1(x , y)

M2(x , y) = e4πixH2(x , y)

M3(x , y) = e6πixH3(x , y)

where

Hj(x , y) =
3∑

k=0

ajkχΥk (C4×[0,1])(x , y).
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Filters (cont’d)

We require the following matrix to be unitary:

M(x , y) =
1

2


M0(Υ0(x , y)) M0(Υ1(x , y)) M0(Υ2(x , y)) M0(Υ3(x , y))
M1(Υ0(x , y)) M1(Υ1(x , y)) M1(Υ2(x , y)) M1(Υ3(x , y))
M2(Υ0(x , y)) M2(Υ1(x , y)) M2(Υ2(x , y)) M2(Υ3(x , y))
M3(Υ0(x , y)) M3(Υ1(x , y)) M3(Υ2(x , y)) M3(Υ3(x , y))



=
1

2


a00 a01 a02 a03

eπix/4a10 −eπix/4a11 eπix/4a12 −eπix/4a03

eπixa20 eπixa21 eπixa22 eπixa23

e3πix/2a30 −e3πix/2a31 e3πix/2a32 −e3πix/2a33

 .
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Filters (cont’d)

Factoring out the exponentials, we obtain two matrices:

M =
1

2


a00 a01 a02 a03

a10 −a11 a12 −a03

a20 a21 a22 a23

a30 −a31 a32 −a33

 H =


a00 a01 a02 a03

a10 a11 a12 a03

a20 a21 a22 a23

a30 a31 a32 a33



unitary
(
1 −1 1 −1

)T
in kernel

We also require a00 = a01 = a02 = a03 = 1.
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Dilated Cuntz Isometries

We define isometries on L2(µ4 × λ) for j = 0, 1, 2, 3 as follows:

Sj f (x , y) = Mj(x , y)f (R(x , y))

= e2πixjH(x , y)f (R(x , y)).

where R(x , y) = (4x mod 1, 2y mod 1).
Since M is unitary, these isometries satisfy the Cuntz relations. Then, we can
define an orthonormal set for L2(µ4 × λ) by:

{Sj1 : j is a reduced word in the alphabet {0, 1, 2, 3}}.
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Fourier Frames

Theorem (Picioroaga & W. (2016))

For |ρ| = 1, ρ 6= −1 {
ωne

2πinx : n ∈ N0

}
is a Parseval frame in L2(µ4), where ωn =

(
1 + ρ

2

)l1(n)

0l2(n)

(
1− ρ

2

)l3(n)

.

Here, lk : N0 → N0 by lk(n) is the number of digits equal to k in the base 4
expansion of n. Note that lk(0) = 0, and we follow the convention that 00 = 1.

H =


1 1 1 1
1 1 ρ ρ
1 1 −1 −1
1 1 −ρ −ρ

 Mρ =
1

2


1 1 1 1
1 −1 ρ −ρ
1 1 −1 −1
1 −1 −ρ ρ


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Projection

We define the subspace of L2(µ4 × λ)

V = {f : ∃g ∈ L2(µ4) with f (x , y) = g(x)}.

We then identify V with L2(µ4) in the canonical way.
We have:

{PVSj1}

is a Parseval frame for V .

PVSj1 =

(
1 + ρ

2

)l1(n)

0l2(n)

(
1− ρ

2

)l3(n)

e2πinx

Here, n =
∑K

i=1 ji4
K−i when j = jK . . . j1.
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Projection (cont’d)

Lemma

If f (x , y) = g(x)h(x , y) with g ∈ L2(µ4) and h ∈ L∞(µ4 × λ), then

[PV f ](x , y) = g(x)H(x)

where H(x) =
∫

[0,1]
h(x , y)dλ(y).

Lemma

For any reduced word ω = jK jK−1 . . . j1,∫ K∏
k=1

Hjk (Rk−1(x , y)) dλ(y) =
K∏

k=1

∫
Hjk (4k−1x , y) dλ(y).
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What about the Cantor-3 Set?

Answer: It doesn’t work.

Impossible to choose coefficients H to obtain:

1 M unitary

2

(
1 −1 1 −1

)T
in the kernel

3 the first row identically 1!
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Fourier Series without Frames
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Kacmarz Algorithm

Given {ϕn}∞n=0 ⊂ H and 〈x , ϕn〉, can we recover x? Note: yes if ONB/frame.

x0 = 〈x , ϕ0〉ϕ0

xn = xn−1 + 〈x − xn−1, ϕn〉ϕn.

If limn→∞‖x − xn‖ = 0 for all x , then the sequence {ϕn}∞n=0 is said to be effective.

x =
∑
〈x , gi 〉ϕi .
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Fourier Series

Theorem (Herr & W., 2015)

If µ is a singular Borel probability measure on [0, 1), then the sequence{
e2πinx

}∞
n=0

is effective in L2(µ). As a consequence, any element f ∈ L2(µ)
possesses a Fourier series

f (x) =
∞∑
n=0

cne
2πinx ,

where the sum converges in the L2(µ) norm.

cn =

∫ 1

0

f (x)gn(x) dµ(x),

where {gn}∞n=0 is the auxiliary sequence of
{
e2πinx

}∞
n=0

in L2(µ).
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Inversion Lemma

Lemma (Herr & W., 2015)

There exists a sequence {αn}∞n=0 such that

gn(x) =
n∑

j=0

αn−je
2πijx .

For each n ∈ N, let
Pn =

{
(m1, . . . ,mk) ∈ Nk

∣∣ k ∈ N, m1 + m2 + · · ·+ mk = n
}

. For p ∈ Pn, let
`(p) be the length of p. Let µ be a Borel probability measure on [0, 1) with
Fourier-Stieltjes transform µ̂(x) =

∫
[0,1)

e−2πixy dµ(y). Define α0 = 1, and for

n ≥ 1, let

αn =
∑
p∈Pn

(−1)`(p)

`(p)∏
j=1

µ̂(pj).
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Elucidation of Fourier Coefficients

Corollary

Let µ be a singular Borel probability measure on [0, 1), let {gn} be the auxiliary
sequence of {e2πinx} in L2(µ), and with respect to these, let {αn}∞n=0 be the
sequence of scalars from the Inversion Lemma. Then for any f ∈ L2(µ),

f (x) =
∞∑
n=0

 n∑
j=0

αn−j f̂ (j)

 e2πinx ,

where the convergence is in norm, and

f̂ (j) :=

∫ 1

0

f (x)e−2πijx dµ(x).

Eric Weber Fourier and Harmonic Analysis of Measures 29 / 43



Harmonic Analysis of Measures:
Reproducing Kernels
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The Hardy Space

The classical Hardy space H2(D) consists of those holomorphic functions
f : D→ C satisfying

‖f ‖2
H2 := sup

0<r<1

∫ 1

0

∣∣f (re2πix)
∣∣2 dx <∞.

Equivalently,

H2 =

{ ∞∑
n=0

cnz
n

∣∣∣∣∣
∞∑
n=0

|cn|2 <∞

}
,

with norm ∥∥∥∥∥
∞∑
n=0

cnz
n

∥∥∥∥∥
2

H2

=
∞∑
n=0

|cn|2 .
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Boundary Functions

Definition

Let ν be a finite Borel measure on [0, 1), and let F : D→ C be a member of the
Hardy space H2. For each 0 < r < 1, define Fr : [0, 1)→ C ∈ L2(ν) by

Fr (x) := F (re2πix).

We say that F possesses an L2(ν) boundary function F ? if there exists a
function F ? : [0, 1)→ C ∈ L2(ν) such that

lim
r→1−

‖Fr − F ?‖ν = 0.

Let λ denote Lebesgue measure on [0, 1). It is known that every member F of H2

possesses an L2(λ) boundary. Moreover,

〈F ,G 〉H2 = 〈F ?,G?〉λ .
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The Szegő Kernel

The Hardy space is a reproducing kernel Hilbert space (RKHS). Its kernel is the
Szegő kernel

sz(w) :=
1

1− zw
.

Thus for all F ∈ H2,
F (z) = 〈F , sz〉H2 = 〈F ?, s?z 〉λ .

In particular,
sz(w) = 〈s?z , s?w 〉λ .

Thus the Hardy space’s kernel reproduces with respect to L2(λ) boundaries.
Indeed, the kernel of any closed subspace will also do so.
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Searching for a Non-Spectral Analogue

Dutkay and Jorgensen (2011) demonstrate that for spectral measures µ, there
exists a subspace of the Hardy space whose kernel reproduces itself with respect
to µ.
Q: Do there exist kernels that reproduce themselves with respect to L2(µ)
boundaries if µ is non-spectral?

Lemma ( Jorgensen & W. )

If
{
e2πiγx

}
γ∈Γ⊆N0

is a Fourier frame in L2(µ), then

Kz(w) :=
∑
γ∈Γ

∑
γ′∈Γ

〈dγ , dγ′〉 zγwγ′

is such a kernel, where {dγ}γ∈Γ is a dual frame of {eγ}γ∈Γ.

How about µ3?
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“Big” Open Questions

Definition (K(µ))

Given a Borel measure µ on [0, 1), we define K(µ) to be the set of positive
matrices K on D such that

Kz(w) :=

∫ 1

0

K?
z (x)K?

w (x) dµ(x)

for all z ,w ∈ D.

Definition (M(K ))

Given a positive matrix K on D, we define M(K ) to be the set of nonnegative
Borel measures µ on [0, 1) such that for each fixed z ∈ D, Kz possesses an L2(µ)
boundary K?

z and Kz(w) reproduces itself with respect to integration of these
L2(µ) boundaries.

Q1: Which K ⊂ H2 are in K(µ)? Q2: Which µ are in M(K ) if K ⊂ H2?
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Herglotz Representation Theorem and the space H(b)

Theorem

There is a 1-to-1 correspondence between the nonconstant inner functions b in H2

and the nonnegative singular Borel measures µ on T ≡ [0, 1) given by

Re

(
1 + b(z)

1− b(z)

)
=

∫
T

1− |z |2

|ξ − z |2
dµ(ξ).

We will say that b corresponds to µ, and that µ corresponds to b. The
construction of the de Branges-Rovnyak space H(b) is based on Toeplitz
operators, but here suffice it to say that for b an inner function, we have

H(b) = H2 	 bH2.
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H(b) as a µ-RKHS

Theorem (Herr & W., 2015)

Let µ be a singular Borel probability measure with corresponding inner function b,
and let kb

z the kernel of H(b). Then

kb
z (w) =

1− b(z)b(w)

1− zw
=
∞∑

m=0

∞∑
n=0

〈gn, gm〉µ z
nwm.

Every function F ∈ H(b) is then given by

F (z) =

∫ 1

0

F ?(x)(kb
z )?(x) dµ(x),

where F ? denotes the L2(µ) boundary of the function F .
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Implications

This means that for any nonnegative singular Borel measure µ with corresponding
inner function b,

kb ∈ K(µ) and µ ∈M(kb).

Let V be a subspace of H(b) and PV the orthogonal projection onto it. Then

PV k
b
z ∈ K(µ) and µ ∈M(PV k

b
z ).

However, there are more examples than these!
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Dextroduals and Levoduals

Definition

Given a Hilbert space H and two sequences {xn}∞n=0 and {yn}∞n=0 in H, if we have

∞∑
n=0

〈f , xn〉 yn = f

with convergence in norm for all f ∈ H, then {xn}∞n=0 is said to be dextrodual to
{yn}∞n=0 (or, “a dextrodual of {yn}∞n=0”), and {yn}∞n=0 is said to be levodual to
{xn}∞n=0.

{xn} and {yn} needn’t be frames. Indeed, {gn} is dextrodual to {en} in L2(µ) for
any singular measure µ on [0, 1), but {en} is not even Bessel.
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Reproducing Kernels from Dextroduals

Theorem (Herr, Jorgensen, & W., 2015)

Let µ be a Borel measure on [0, 1). Let {ψn} ⊂ L2(µ) be a Bessel sequence that
is dextrodual to {en}. Then for each fixed z ∈ D,

Kz(w) :=
∑
m

∑
n

〈ψn, ψm〉µ z
nwm

is a well-defined function on D. Consequently, Kz ∈ K(µ).
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Some Dextroduals of {en}

There exist many dextroduals of {en} in L2(µ):

Theorem (Herr, Jorgensen, & W., 2015)

Suppose µ and λ are singular Borel probability measures on [0, 1) such that
µ << λ, and suppose there exist constants A and B such that 0 < A ≤ dµ

dλ ≤ B

on supp
(

dµ
dλ

)
:=
{
x ∈ [0, 1) | dµ

dλ (x) 6= 0
}

. If {hn} is the auxiliary sequence of

{en}∞n=0 in L2(λ), then for all f ∈ L2(µ),

f =
∞∑
n=0

〈
f ,

hn
dµ
dλ

〉
µ

en

in the L2(µ) norm. Moreover,
{

hn
dµ
dλ

}
is a frame in L2(µ) with bounds no worse

than 1
B and 1

A . Furthermore, if λ′ also satisfies the hypotheses, then λ′ 6= λ

implies

{
h′n
dµ
dλ′

}
6=
{

hn
dµ
dλ

}
in L2(µ).
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Sub-Hardy spaces

Consequence: There exist subspaces of H2(D)–with a different norm!–such that
the kernel reproduces itself with respect to µ.

In the Dutkay-Jorgensen spectral situation, the norms are equal.
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The End

Thank you!
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