Order Bounded Maps and Operator Spaces

Travis Russell

University of Nebraska-Lincoln

NIFAS

March 28, 2015

Outline

Ordered Vector Spaces

Order Bounded Maps

Operator Spaces

An Extension Theorem

Ordered Vector Spaces

Ordered Vector Spaces

An **ordered vector space** is a normed vector space V over \mathbb{R} , with a subset V_+ satisfying the following.

- \bullet $a, b \in V_+$ implies that $a + b \in V_+$.
- ② $a \in V_+$ and $t \ge 0$ implies that $ta \in V_+$.
- $V_+ \cap -V_+ = \{0\}.$
- ullet V_+ is a closed subset of V.

We write $a \ge 0$ to mean that $a \in V_+$. We also write $a \le b$ whenever $b - a \in V_+$.

An ordered vector space V is called an **order unit space** if there exists an element $e \in V$ (the **order unit**) s.t. for each $a \in V$ there is a t > 0 with -te < a < te.

An order unit e is **Archimedean** if $te + a \ge 0$ for all t > 0 implies that $a \ge 0$. When an OU space V has an Archimedean order unit, we call V an **Archimedean Order Unit Space** (AOU space).

Setting $||a|| = \inf\{t > 0 : -te \le a \le te\}$ defines a norm on V.

Order Bounds

Definition (Order Bounds)

Let V be an ordered vector space and $a \in V$. We define the **positive** order bound of a, denoted $|a|_+$ via the formula

$$|a|_{+} = \inf\{||a+p|| : p \ge 0\} = dist(a, -V_{+}).$$

We define the **negative order bound** of a, denoted $|a|_-$ via the formula

$$|a|_{-} = \inf\{||a - p|| : p \ge 0\} = dist(a, V_{+}).$$

Easy observations:

- $a \mapsto |a|_+$ and $a \mapsto |a|_-$ are non-negative sublinear functionals.
- $a \ge 0$ if and only if $|a|_{-} = 0$.
- If $|a|_+ = |a|_- = 0$, then a = 0.

In general, we call a sublinear functional $\omega: V \to \mathbb{R}_+$ proper if $\omega(x) = \omega(-x) = 0$ implies x = 0.

Example (Trivial Positive Cone)

Suppose that V is an ordered vector space and that $V_+ = \{0\}$. Then for all $a \in V_+$, $|a|_+ = |a|_- = ||a||$.

Example (AOU Spaces)

Let V be an AOU space. then

$$|a|_+ = \inf\{t > 0 : a \le te\}$$

and

$$|a|_{-} = \inf\{t > 0 : a > -te\}$$

$$|a|_{-} = \inf\{t > 0 : a \ge -te\}.$$

$$a \leq te$$

Order Bounded Maps

Order Bounded Maps

Definition

Let $S \subset V$, and W be ordered vector spaces, and $\phi: S \to W$ be a linear map. We call ϕ V-order bounded if there exists a constant C > 0 such that $|\phi(a)|_{+,W} \leq C|a|_{+,V}$ and $|\phi(a)|_{-,W} \leq C|a|_{-,V}$ for all $a \in S$.

Note:

- Order bounded maps are automatically positive. For, suppose that $x \in S_+$. Then $|\phi(x)|_{-,W} \le C|x|_{-,V} = 0$. So $\phi(x) \in W_+$.
- One inequality suffices: $|\phi(x)|_{+,W} \le C|x|_{+,V}$ for all $x \in S$ implies ϕ is V-order bounded.
- A functional $\phi: S \to \mathbb{R}$ is order bounded if and only if ϕ is positive and bounded.

Order Bounded Functionals

Example

Let S be the span of the element x=(-2,1) in $V=(\mathbb{R}^2,\|\cdot\|_\infty)$. Then $f:S\to\mathbb{R}$ defined by f(x)=2 is positive (trivially) and contractive. If \tilde{f} is any positive extension of f to $V=\mathbb{R}^2$, observe that $\tilde{f}((1,1))\geq f(x)=2$. Thus, \tilde{f} cannot be contractive. So f has no positive contractive extension to V.

The above example shows that the Hahn-Banach theorem fails (in general) in the category of ordered vector spaces. However,

Theorem

Let $S \subset V$ be ordered vector spaces, $f: S \to \mathbb{R}$ a positive bounded functional. Then there exists a positive bounded extension $\tilde{f}: V \to \mathbb{R}$ with $\|\tilde{f}\| = \|f\|$ iff f is V-order bounded.

We call a vector space V over $\mathbb C$ a *-vector space if it posses an involution $*:V\to V$.

For each $B = (b_{i,i}) \in M_{n,m}(V)$, define $B^* = (b_{i,i}^*) \in M_{m,n}(V)$.

Definition

Let V be a *-vector space, together with a sequence of proper sublinear functionals $\{\omega_n : M_n(V)_{SA} \to \mathbb{R}_+\}$ satisfying the following conditions.

- For each $X \in M_{n,k}$ and $A \in M_n(V)_{SA}$, $\omega_k(X^*AX) \leq ||X||^2 \omega_n(A)$.
 - Por each $A \in M_{n,k}$ and $A \in M_{n}(V)_{SA}$, $\omega_{k}(X | AX) \leq ||X|| ||\omega_{n}(A)||$ Proveded $A \in M_{n}(V)_{SA}$ and $B \in M_{k}(V)_{SA}$,

 $\omega_{n+k}(A \oplus B) = \max\{\omega_n(A), \omega_k(B)\}.$

We call $(V, \{\omega_n\})$ an L^{∞} -matricially ordered space $(L^{\infty}$ -MOS). We call $\{\omega_n\}$ the order bounds of V.

Every L^{∞} -MOS $(V, \{\omega_n\})$ posses a sequence of induced norms $\{\|\cdot\|_{n,m}\}$ and positive cones $\{M_n(V)_+\}$.

For each $A \in M_n(V)_{SA}$, define $||A||_n = max\{\omega_n(A), \omega_n(-A)\}$, and for each $B \in M_{n,m}(V)$, define

$$||B||_{n,m}=||\left[\begin{array}{cc}0&B\\B^*&0\end{array}\right]||_{n+m}.$$

Set $M_n(V)_+ = \ker(\omega_n)$.

 $(V, \{\|\cdot\|_{n,m}\})$ is an operator space, and $M_n(V)_+$ is a closed proper cone in $M_n(V)_{SA}$.

We can build L^{∞} -MOS's out of concrete self-adjoint operator spaces.

Let V be a self-adjoint operator space, and let $S \subseteq V$ be a self-adjoint subspace of V. For each $n \in \mathbb{N}$, define $\omega_n : M_n(S)_{SA} \to \mathbb{R}$ by setting

$$\omega_n(A) = |A|_{-,M_n(V)_{SA}}$$

for each $A \in M_n(S)_{SA}$. Then $(S, \{\omega_n\})$ is an L^{∞} -matrically ordered space.

Each self-adjoint operator space has potentially many representations as an L^{∞} -MOS.

Definition

Let $(V, \{\rho_n\})$ and $(W, \{\omega_n\})$ be L^{∞} -MOS's. We call a linear map $\phi: V \to W$ completely order bounded if there exists some C > 0 such that $\omega_n(\phi^{(n)}(A)) \le C\rho_n(A)$ for all $A \in M_n(V)_{SA}$ and $n \in \mathbb{N}$. We call ϕ a complete order-bound isometry if $\omega_n(\phi^{(n)}(A)) = \rho_n(A)$ for all $A \in M_n(V)_{SA}$ and $n \in \mathbb{N}$. A bijection which is also a complete order-bound

isometry will be called an complete order-bound isomorphism.

Unitizations

Definition

Let $(V, \{\omega_n\})$ be an L^{∞} -MOS. Algebraically, set $M_{n,m}(V_1) = M_{n,m}(V) \oplus M_{n,m}$. For each $A \in M_{n,m}(V)$ and $X \in M_{n,m}$, define $(A, X)^* = (A^*, X^*) \in M_{m,n}(V_1)$. For $X \in M_n$, let $X_t = X + tI_n$. Define $u_n : M_n(V_1)_{SA} \to \mathbb{R}_+$ by

$$u_n(A,X) = \inf\{t > 0 : X_t > 0, \omega_n((X_t)^{-1/2}A(X_t)^{-1/2}) \le 1\}.$$

Theorem

Let $(V, \{\omega_n\})$ be an L^{∞} -matricially ordered space. Then $(V_1, \{u_n\})$ described in the above definition is an L^{∞} -MOS. For each $n \in \mathbb{N}$, $(0, I_n) \in M_n(V_1)$ is a archimedean order unit (so $(V_1, (0, 1))$ is an abstract operator system). The mapping $a \mapsto (a, 0)$ from V to V_1 is completely order-bound isometric.

We now have the main result.

Theorem

Let $(V, \{\omega_n\})$ be an L^{∞} -matricially ordered space. Then there exists a Hilbert space H and a self-adjoint operator space $V' \subset B(H)$, and a complete order-bound isomorphism $\phi: V \to V'$, where V' is regarded as an L^{∞} -matricially ordered space $(V', \{\omega'_n\})$ by setting $\omega'_n(A) = |A|_{-M_n(V')_{SA}}$ for each $A \in M_n(V')_{SA}$.

Proof: Let V_1 be the unitization described on the last slide. By the Choi-Effros characterization of operator systems, we can identify V_1 with a subspace of B(H) for some Hilbert space H. Take $V' = \{(a,0): a \in V\} \subset V_1$. The V is completely order-isomorphic to V' by the preceding theorem. \square

An Extension Theorem

When (W, e) is an operator system, we will regard it as an L^{∞} -MOS by setting

$$\rho_n(A) = |A|_- = \inf\{t > 0 : A \ge -t(I_n \otimes e)\}$$

for each n.

Lemma

Let $(V, \{\omega_n\})$ be an L^{∞} -MOS and W be an operator system with order unit $e \in W$. Suppose that $\phi: V \to W$ is completely order contractive. Define an extension $\phi_1: V_1 \to W$ by setting $\phi_1((0,1)) = e$. Then ϕ_1 is

completely positive.

Second main result:

Theorem

Let S,V be L^{∞} -MOS's with $S \subset V$, and let H be a Hilbert space. Let $\phi: S \to B(H)$ be a completely order contractive map. Then there exists a completely order contractive map $\tilde{\phi}: V \to B(H)$ extending ϕ .

Proof: Apply the lemma to ϕ and to the inclusion map $S \subset V_1$ to obtain:

$$\begin{array}{ccc}
V_1 \\
& \cup \\
\phi_1: & S_1 & \rightarrow & B(H)
\end{array}$$

Apply the Arveson extension theorem, and restrict. \square

Definition

Let V, S and W be self-adjoint operator spaces with $S \subset V$. We call a map $\phi: S \to W$ V-order bounded if ϕ is self adjoint and if the restricted map $\phi: S_{SA} \to W_{SA}$ is V-order bounded. We call a map $\phi: S \to W$ completely V-order bounded if there is a constant C > 0 such that for all $n \in \mathbb{N}$ and $A \in M_n(V)_{SA}$, $|\phi^{(n)}(A)|_{-M_n(W)_{SA}} \le C|A|_{-M_n(V)}$.

Theorem

Let V and W be self-adjoint operator spaces and $\phi: V \to W$ be a linear map. Then ϕ is completely order bounded if and only if ϕ is completely positive and completely bounded.

Corollary

Let S,V be self-adjoint operator spaces with $S \subset V$, and let H be a Hilbert space. Let $\phi: S \to B(H)$ be a completely contractive and completely positive linear map. Then there exists a completely contractive completely positive extension $\tilde{\phi}: V \to B(H)$ if and only if ϕ is completely V-order contractive.

References:

- 35.

- E. Muhamadiev, A. T. Diab, On the Extension of Positive Linear Functionals. Internat. J. Math. & Math. Sci. Vol 23, No. 1 (2000), 31
- F.F. Bonsall, Subliner Functionals and Ideals in Partially Ordered Vector Spaces. Proc. London Math. Soc. (3) 4 (1954).
- V. I. Paulsen, M. Tomforde, Vector Spaces with an Order Unit. (2006)
 - W. Werner, Subspaces of L(H) That Are *-Invariant. J. Funct. Anal 193, 207-223 (2002).

The End - thanks for listening!