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Ordered Vector Spaces



Ordered Vector Spaces

An ordered vector space is a normed vector space V over R, with a
subset V. satisfying the following.

Q a,be V, implies that a+ b e V..

Q@ ac V4 and t > 0 implies that ta € V.
Q@ V,n-Vy={0}.

@ V. is a closed subset of V.

We write a > 0 to mean that a € V. We also write a < b whenever
b —ac V+.



An ordered vector space V is called an order unit space if there exists an
element e € V (the order unit) s.t. for each a € V there is a t > 0 with
—te < a < te.

An order unit e is Archimedean if te + a > 0 for all t > 0 implies that
a > 0. When an OU space V has an Archimedean order unit, we call V an

Archimedean Order Unit Space (AOU space).

Setting ||a]| = inf{t > 0: —te < a < te} defines a norm on V.



Order Bounds

Definition (Order Bounds)

Let V be an ordered vector space and a € V. We define the positive
order bound of a, denoted |a| via the formula

jal+ = inf{lla+ pll : p > 0} = dist(a, — V).

We define the negative order bound of a, denoted |a|_ via the formula

la| - = inf{|la—p|| : p > 0} = dist(a, V).




Easy observations:

@ a> |a|+ and a > |a|— are non-negative sublinear functionals.
@ a>0if and only if |a|]— = 0.
o If |a|4 =]a]- =0, then a=0.

In general, we call a sublinear functional w: V — R proper if
w(x) = w(—x) = 0 implies x = 0.



Example (Trivial Positive Cone)

Suppose that V is an ordered vector space and that V; = {0}. Then for
all a e Vi, [l = |al = [lall.

Example (AOU Spaces)
Let V be an AOU space. then

la|l+ = inf{t >0:a< te}

and
la|- =inf{t >0:a> —te}.




Order Bounded Maps



Order Bounded Maps

Definition

Let S C V, and W be ordered vector spaces, and ¢ : S — W be a linear
map. We call ¢ V-order bounded if there exists a constant C > 0 such
that |¢(a)|+,w < Cla|+ v and |¢(a)|—w < Cla|_ v forall a € S.

Note:
@ Order bounded maps are automatically positive. For, suppose that
x € 5. Then |¢(x)|—.w < Clx|—,v =0. So ¢(x) € W,..
@ One inequality suffices: |¢(x)|4+,w < Clx|+,v for all x € S implies ¢
is V-order bounded.

@ A functional ¢ : S — R is order bounded if and only if ¢ is positive
and bounded.



Order Bounded Functionals

Let S be the span of the element x = (—2,1) in V = (R?,|| - ||o0). Then
f 1 S — R defined by f(x) = 2 is positive (trivially) and contractive. If f is
any positive extension of f to V = R?, observe that f((1,1)) > f(x) = 2.
Thus, f cannot be contractive. So f has no positive contractive extension
to V.

The above example shows that the Hahn-Banach theorem fails (in general)
in the category of ordered vector spaces. However,

Let S C V be ordered vector spaces, f : S — R a positive bounded
functional. Then there exists a positive bounded extension f : V — R with

Il = |l iff f is V-order bounded.




Operator Spaces



We call a vector space V over C a x-vector space if it posses an involution
x: V>V,

For each B = (b;j) € Mnm(V), define B* = (b};) € My, n(V).

Definition

Let V be a x-vector space, together with a sequence of proper sublinear
functionals {w, : M,(V)sa — R} satisfying the following conditions.
© For each X € M, and A € M,(V)sa, wi(X*AX) < || X|Pwa(A).
@ For each A€ M,(V)sa and B € Mi(V)sa,
wnik(A® B) = max{wn(A),wk(B)}.
We call (V,{wn}) an L*°-matricially ordered space (L>*°-MOS). We call
{wn} the order bounds of V.




Every L*°-MOS (V,{wn}) posses a sequence of induced norms {|| - ||n.m}
and positive cones {M,(V)4}.

For each A € M,(V)sa, define ||A||n = max{wn(A),wn(—A)}, and for
each B € M, »(V), define

0 B
I8l =11| e G | ot

Set Mp(V)4 = ker(wp).

(V. {ll - lln,m}) is an operator space, and M,(V) is a closed proper cone
in Mn(V)SA-



We can build L>°-MOS's out of concrete self-adjoint operator spaces.

Let V be a self-adjoint operator space, and let S C V' be a self-adjoint
subspace of V. For each n € N, define w, : M,(S)sa — R by setting

wn(A) = [Al- Ma(V)sa
for each A € M,(S)sa. Then (S,{wn}) is an L°>°-matrically ordered space.

Each self-adjoint operator space has potentially many representations as
an L*>°-MOS.



Definition

Let (V,{pn}) and (W,{ws}) be L>°-MOS's. We call a linear map

¢ : V. — W completely order bounded if there exists some C > 0 such
that w,(¢(M(A)) < Cpn(A) for all A€ M,(V)sa and n € N. We call ¢ a
complete order-bound isometry if w,(¢("(A)) = p,(A) for all

A € Mp(V)sa and n € N. A bijection which is also a complete order-bound
isometry will be called an complete order-bound isomorphism.

v




Unitizations

Let (V,{wn}) be an L>°-MOS. Algebraically, set

M. m(Vi) = Mpm(V) ® My m. For each A€ M, (V) and X € My, m,
define (A, X)* = (A*, X*) € M n(V4). For X € M, let X; = X + tl,.
Define u, : M,(Vi)sa — Ry by

un(A, X) = inf{t > 0: X; > 0,wn((Xe) "V2A(X,)"V/2) < 1}.

Let (V,{wn}) be an L>°-matricially ordered space. Then (Vi,{u,})
described in the above definition is an L°°-MOS. For each n € N,

(0, 1) € My(V1) is a archimedean order unit (so (V1,(0,1)) is an abstract
operator system). The mapping a — (a,0) from V to V; is completely
order-bound isometric.




We now have the main result.

Theorem

Let (V,{wn}) be an L>-matricially ordered space. Then there exists a
Hilbert space H and a self-adjoint operator space V' C B(H), and a
complete order-bound isomorphism ¢ : V. — V', where V' is regarded as
an L*-matricially ordered space (V',{w}}) by setting

Wn(A) = [A|Z m,(v1)ss for each A€ My(V')sa.

Proof: Let Vi be the unitization described on the last slide. By the
Choi-Effros characterization of operator systems, we can identify V; with a
subspace of B(H) for some Hilbert space H. Take

V' ={(a,0):a€ V} C V5. The V is completely order-isomorphic to V'
by the preceding theorem. [J



An Extension Theorem



When (W, e) is an operator system, we will regard it as an L>°-MOS by
setting
pn(A) = A= =inf{t>0: A> —t(l,®e)}

for each n.

Let (V,{wn}) be an L°°-MOS and W be an operator system with order
unit e € W. Suppose that ¢ : V — W is completely order contractive.
Define an extension ¢1 : Vi — W by setting $1((0,1)) = e. Then ¢1 is
completely positive.




Second main result:

Let S,V be L°°-MOS’s with S C V, and let H be a Hilbert space. Let
¢ : S — B(H) be a completely order contractive map. Then there exists a
completely order contractive map ¢ : V — B(H) extending ¢.

Proof: Apply the lemma to ¢ and to the inclusion map S C V; to obtain:

Vi
Ul
¢1Z 51 — B(H)

Apply the Arveson extension theorem, and restrict. [J



Definition

Let V, S and W be self-adjoint operator spaces with S C V. We call a
map ¢ : S — W V-order bounded if ¢ is self adjoint and if the restricted
map ¢ : Ssa — Wsp is V-order bounded. We callamap ¢p: S — W
completely V-order bounded if there is a constant C > 0 such that for
all n € N and A € Ma(V)sa, [0 (A)|— mywyss < CIAIZ mo(v)-

Let V and W be self-adjoint operator spaces and ¢ : V — W be a linear
map. Then ¢ is completely order bounded if and only if ¢ is completely
positive and completely bounded.




Let S,V be self-adjoint operator spaces with S C V/, and let H be a
Hilbert space. Let ¢ : S — B(H) be a completely contractive and
completely positive linear map. Then there exists a completely contractive
completely positive extension <Z~> : V. — B(H) if and only if ¢ is completely
V -order contractive.
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The End - thanks for listening!
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