Cartan MASAs and Exact Sequences of Inverse Semigroups

Adam H. Fuller (University of Nebraska - Lincoln)
joint work with Allan P. Donsig and David R. Pitts

NIFAS Nov. 2014, Des Moines, Iowa
Let \mathcal{M} be a von Neumann algebra. A maximal abelian subalgebra (MASA) \mathcal{D} in \mathcal{M} is a Cartan MASA if

1. the unitaries $U \in \mathcal{M}$ such that $UDU^* = U^*DU = \mathcal{D}$ span a weak-* dense subset in \mathcal{M};
2. there is a normal, faithful conditional expectation $E : \mathcal{M} \to \mathcal{D}$.

We will call the pair $(\mathcal{M}, \mathcal{D})$ a Cartan pair. We call the normalizing partial isometries groupoid normalizers, written $G^\mathcal{M}(\mathcal{D})$.
Let \mathcal{M} be a von Neumann algebra. A maximal abelian subalgebra (MASA) \mathcal{D} in \mathcal{M} is a Cartan MASA if

1. the unitaries $U \in \mathcal{M}$ such that $U\mathcal{D}U^* = U^*\mathcal{D}U = \mathcal{D}$ span a weak-* dense subset in \mathcal{M};
2. there is a normal, faithful conditional expectation $E : \mathcal{M} \to \mathcal{D}$.

Alternatively

1. the partial isometries $V \in \mathcal{M}$ such that $V\mathcal{D}V^*, V^*\mathcal{D}V \subseteq \mathcal{D}$ span a weak-* dense subset in \mathcal{M};
2. there is a normal, faithful conditional expectation $E : \mathcal{M} \to \mathcal{D}$.

We will call the pair $(\mathcal{M}, \mathcal{D})$ a Cartan pair. We call the normalizing partial isometries groupoid normalizers, written $G\mathcal{M}(\mathcal{D})$.
Let \mathcal{M} be a von Neumann algebra. A maximal abelian subalgebra (MASA) \mathcal{D} in \mathcal{M} is a Cartan MASA if

1. the unitaries $U \in \mathcal{M}$ such that $UDU^* = U^*DU = \mathcal{D}$ span a weak-* dense subset in \mathcal{M};
2. there is a normal, faithful conditional expectation $E : \mathcal{M} \to \mathcal{D}$.

Alternatively

1. the partial isometries $V \in \mathcal{M}$ such that $VDV^*, V^*DV \subseteq \mathcal{D}$ span a weak-* dense subset in \mathcal{M};
2. there is a normal, faithful conditional expectation $E : \mathcal{M} \to \mathcal{D}$.

We will call the pair $(\mathcal{M}, \mathcal{D})$ a Cartan pair. We call the normalizing partial isometries groupoid normalizers, written $\mathcal{G}_\mathcal{M}(\mathcal{D})$.
Examples of Cartan Pairs

Example

Let M_n be the $n \times n$ complex matrices, and let D_n be the diagonal $n \times n$ matrices. Then (M_n, D_n) is a Cartan pair:

1. the matrix units normalize D_n and generate M_n;
2. The map

 $$E: [a_{ij}] \mapsto \text{diag}[a_{11}, \ldots, a_{nn}]$$

 gives a faithful normal conditional expectation.
Examples of Cartan Pairs

Example

Let M_n be the $n \times n$ complex matrices, and let D_n be the diagonal $n \times n$ matrices. Then (M_n, D_n) is a Cartan pair:

1. the matrix units normalize D_n and generate M_n;
2. The map

$$E : [a_{ij}] \mapsto \text{diag}[a_{11}, \ldots, a_{nn}]$$

gives a faithful normal conditional expectation.

Example

Let $\mathcal{D} = L^\infty(\mathbb{T})$ and let α be an action of \mathbb{Z} on \mathbb{T} by irrational rotation. Then $L^\infty(\mathbb{T})$ is a Cartan MASA in $L^\infty(\mathbb{T}) \rtimes_\alpha \mathbb{Z}$.
Example

Let
\[G = \left\{ \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} : a, b \in \mathbb{R}, \ a \neq 0 \right\}, \]
and let
\[H = \left\{ \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} : b \in \mathbb{R} \right\}. \]

Then \(H \) is a normal subgroup of \(G \) and \(L(H) \) is Cartan MASA in \(L(G) \).
Feldman and Moore (1977) explored Cartan pairs $(\mathcal{M}, \mathcal{D})$ where \mathcal{M}_* is separable and $\mathcal{D} = L^\infty(X, \mu)$. They showed:

1. there is a measurable equivalence relation R on X with countable equivalence classes and a 2-cocycle σ on R s.t.

 $$\mathcal{M} \simeq \mathcal{M}(R, \sigma) \text{ and } \mathcal{D} \simeq \mathcal{A}(R, \sigma),$$

 where $\mathcal{M}(R, \sigma)$ are “functions on R” and $\mathcal{A}(R, \sigma)$ are the “functions” supported on diag. $\{(x, x) : x \in X\}$;

2. every sep. acting pair $(\mathcal{M}, \mathcal{D})$ arises this way.
Consider the Cartan pair \((M_3, D_3)\). Let \(G = G_{M_3}(D_3)\). E.g., an element of \(G\) could look like

\[
V = \begin{bmatrix}
0 & \lambda & 0 \\
\mu & 0 & 0 \\
0 & 0 & \gamma
\end{bmatrix},
\]

with \(\lambda, \mu, \gamma \in \mathbb{T}\).

Let \(\mathcal{P} = G \cap D_n\). And let \(S = G/\mathcal{P}\). So elements of \(S\) are of the form

\[
S = \begin{bmatrix}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{bmatrix}.
\]

From \((M_n, D_n)\) we have 3 semigroups: \(\mathcal{P}\), \(G\) and \(S\).
Conversely, starting with S, we can construct P: P is all the continuous functions from the idempotents of S into \mathbb{T}. From S and P we can construct G, since every element of G is the product of an element in S and an element in P. From G we can construct (M_n, D_n) as the span of G.
Our Objective: Give an alternative approach using algebraic rather than measure theoretic tools which
• conceptually simpler;
• applies to the non-separably acting case.
A semigroup S is an *inverse semigroup* if for each $s \in S$ there is a unique “inverse” element s^\dagger such that

$$ss^\dagger s = s \text{ and } s^\dagger ss^\dagger = s^\dagger.$$

We denote the idempotents in an inverse semigroup S by $E(S)$. The idempotents form an abelian semigroup. For any element $s \in S$, $ss^\dagger \in E(S)$.
A semigroup S is an *inverse semigroup* if for each $s \in S$ there is a unique “inverse” element s^\dagger such that

$$ss^\dagger s = s \text{ and } s^\dagger ss^\dagger = s^\dagger.$$

We denote the idempotents in an inverse semigroup S by $\mathcal{E}(S)$. The idempotents form an abelian semigroup. For any element $s \in S$, $ss^\dagger \in \mathcal{E}(S)$.

An inverse semigroup S has a natural partial order defined by

$$s \leq t \text{ if and only if } s = te$$

for some idempotent $e \in \mathcal{E}(S)$.
Example

Consider the Cartan pair \((M_n, D_n)\) again. Again, let

\[
G = G_{M_n}(D_n)
\]

\[
= \{ \text{partial isometries } V \in M_n : VD_nV^* \subseteq D_n, \ V^*D_nV \subseteq D_n \}.
\]

Then \(G\) is an inverse semigroup:

- If \(V, W \in G\) then

\[
(VW)D_n(VW)^* = V(WD_nW^*)V^* \subseteq D_n,
\]

so \(VW \in G\);
Example

Consider the Cartan pair \((M_n, D_n)\) again. Again, let

\[
G = G_{M_n}(D_n) = \{\text{partial isometries } V \in M_n : VD_nV^* \subseteq D_n, V^*D_nV \subseteq D_n\}.
\]

Then \(G\) is an inverse semigroup:

- if \(V, W \in G\) then
 \[
 (VW)D_n(VW)^* = V(WD_nW^*)V^* \subseteq D_n,
 \]
 so \(VW \in G\);
- the “inverse” of \(V\) is \(V^*\);
Consider the Cartan pair \((M_n, D_n)\) again. Again, let

\[G = \mathcal{G}_{M_n}(D_n) = \{\text{partial isometries } V \in M_n : V D_n V^* \subseteq D_n, \ V^* D_n V \subseteq D_n\}. \]

Then \(G\) is an inverse semigroup:

- if \(V, W \in G\) then
 \[(VW)D_n(VW)^* = V(WD_nW^*)V^* \subseteq D_n,\]
 so \(VW \in G\);
- the “inverse” of \(V\) is \(V^*\);
- the idempotents are the projections in \(D_n\).
Example

Consider the Cartan pair \((M_n, D_n)\) again. Again, let

\[G = G_{M_n}(D_n) \]
\[= \{ \text{partial isometries } V \in M_n: VD_n V^* \subseteq D_n, \ V^* D_n V \subseteq D_n \}. \]

Then \(G \) is an inverse semigroup:

- if \(V, W \in G \) then
 \[(VW)D_n (VW)^* = V(WD_n W^*) V^* \subseteq D_n, \]
 so \(VW \in G; \)
- the “inverse” of \(V \) is \(V^*; \)
- the idempotents are the projections in \(D_n; \)
- \(V \leq W \) if \(V = WP \) for some projection \(P \in D_n. \)
More generally...

Example

Let \((\mathcal{M}, \mathcal{D})\) be a Cartan pair. Then the groupoid normalizers \(G_M(\mathcal{D})\) form an inverse semigroup.

- if \(V, W \in G_M(\mathcal{D})\) then
 \[
 (VW)D(VW)^* = V(WDW^*)V^* \subseteq \mathcal{D},
 \]
 so \(VW \in G_M(\mathcal{D})\);
- the “inverse” of \(V\) is \(V^*\);
- the idempotents are the projections in \(\mathcal{D}\);
- \(V \leq W\) if \(V = WP\) for some projection \(P \in \mathcal{D}\).
Let S and P be inverse semigroups. And let

$$\pi : P \to S,$$

be a surjective homomorphism such that $\pi|_{\mathcal{E}(P)}$ is an isomorphism from $\mathcal{E}(P)$ to $\mathcal{E}(S)$. An *idempotent separating extension of S by P* is an inverse semigroup G with

$$P \xleftarrow{\iota} G \xrightarrow{q} S$$

and

- ι is an injective homomorphism;
- q is a surjective homomorphism;
- $q(g) \in \mathcal{E}(S)$ if and only if $g = \iota(p)$ for some $p \in P$;
- $q \circ \iota = \pi$.

Note that $\mathcal{E}(P) \cong \mathcal{E}(G) \cong \mathcal{E}(S)$.

Extensions of Inverse Semigroups
Let G be an inverse semigroup. Define an equivalence relation \((the Munn congruence)\) \sim on G by

$$s \sim t \text{ if } ses^\dagger = tet^\dagger \text{ for all } e \in \mathcal{E}(G).$$
Let G be an inverse semigroup. Define an equivalence relation (the Munn congruence) \sim on G by

$$s \sim t \text{ if } ses^\dagger = tet^\dagger \text{ for all } e \in \mathcal{E}(G).$$

If $s \sim t$ and $u \sim v$ then

$$su \sim tv.$$

Thus $S = G/\sim$ is an inverse semigroup.
Let G be an inverse semigroup. Define an equivalence relation (the Munn congruence) \sim on G by

$$s \sim t \text{ if } ses^\dagger = tet^\dagger \text{ for all } e \in \mathcal{E}(G).$$

If $s \sim t$ and $u \sim v$ then

$$su \sim tv.$$

Thus $S = G/\sim$ is an inverse semigroup.

Let $P = \{v \in G : v \sim e \text{ for some } e \in \mathcal{E}(G)\}$. Then P is an inverse semigroup.

And G is an extension of S by P:

$$P \hookrightarrow G \twoheadrightarrow S.$$
Let \((\mathcal{M}, \mathcal{D})\) be a Cartan pair. Let

\[G = G_\mathcal{M}(\mathcal{D}) = \{ v \in \mathcal{M} \text{ a partial isometry: } v\mathcal{D}v^* \subseteq \mathcal{D} \text{ and } v^*\mathcal{D}v \subseteq \mathcal{D} \}. \]
Let \((M, D)\) be a Cartan pair. Let

\[
G = G_M(D) = \{ v \in M \text{ a partial isometry: } vDv^* \subseteq D \text{ and } v^*Dv \subseteq D \}.
\]

Let \(S = G/\sim\), where \(\sim\) is the Munn congruence on \(G\) and let

\[
P = \{ V \in G : V \sim P, \ P \in \text{Proj}(D) \}.
\]

Definition

We call the extension \(\overset{}{P} \rightarrow G \rightarrow S \),

the *extension associated to the Cartan pair* \((M, D)\).
Properties of associated extensions

Let $(\mathcal{M}, \mathcal{D})$ be a Cartan pair, and let

$$P \hookrightarrow G \rightarrow S,$$

be the associated extension.

Then $P = \mathcal{G}_\mathcal{M}(\mathcal{D}) \cap \mathcal{D}$, i.e. P is simply the partial isometries in \mathcal{D}.
Let \((\mathcal{M}, \mathcal{D})\) be a Cartan pair, and let

\[P \hookrightarrow G \twoheadrightarrow S, \]

be the associated extension.

Then \(P = \mathcal{G}_\mathcal{M}(\mathcal{D}) \cap \mathcal{D} \), i.e. \(P \) is simply the partial isometries in \(\mathcal{D} \).

The inverse semigroup \(S \) has the following properties

1. \(S \) is fundamental: \(\mathcal{E}(S) \) is maximal abelian in \(S \);
2. \(\mathcal{E}(S) \) is a hyperstonean boolean algebra, i.e. the idempotents are the projection lattice of an abelian \(W^* \)-algebra;
3. \(S \) is a meet semilattice under the natural partial order on \(S \);
4. for every pairwise orthogonal family \(\mathcal{F} \subseteq S \), \(\bigvee \mathcal{F} \) exists in \(S \);
5. \(S \) contains 1 and 0.
Properties of associated extensions

Let \((\mathcal{M}, \mathcal{D})\) be a Cartan pair, and let

\[P \hookrightarrow G \twoheadrightarrow S, \]

be the associated extension. Then \(P = \mathcal{G}_\mathcal{M}(\mathcal{D}) \cap \mathcal{D}\), i.e. \(P\) is simply the partial isometries in \(\mathcal{D}\).

The inverse semigroup \(S\) has the following properties

1. \(S\) is fundamental: \(E(S)\) is maximal abelian in \(S\);
2. \(E(S)\) is a hyperstonean boolean algebra, i.e. the idempotents are the projection lattice of an abelian \(W^*\)-algebra;
3. \(S\) is a meet semilattice under the natural partial order on \(S\);
4. for every pairwise orthogonal family \(\mathcal{F} \subseteq S\), \(\bigvee \mathcal{F}\) exists in \(S\);
5. \(S\) contains 1 and 0.

Definition

An inverse semigroup \(S\), satisfying the conditions above is called a Cartan inverse monoid.
Example

In the matrix example \((M_n, D_n)\), the semigroups \(P\), \(G\) and \(S\) are the semigroups discussed earlier:

1. \(G\) is the partial isometries \(V\) such that \(VD_nV^*, \ V^*D_nV \subseteq D_n\);
2. \(P\) is the partial isometries in \(D_n\);
3. \(S\) is the matrices in \(G\) with only 0 and 1 entries.
Let $\alpha: S_1 \to S_2$ be an isomorphism of Cartan inverse monoids. Then $\mathcal{E}(S_i)$ is the lattice of projections for a \mathcal{W}^*-algebra, $\mathcal{D}_i = \mathcal{C}(\mathcal{E}(S_i))$. The isomorphism α induces an isomorphism $\tilde{\alpha}$ from \mathcal{D}_1 to \mathcal{D}_2.

\[
\begin{array}{c}
\alpha: S_1 \to S_2 \\
\tilde{\alpha}: \mathcal{D}_1 \to \mathcal{D}_2
\end{array}
\]
Let $\alpha: S_1 \rightarrow S_2$ be an isomorphism of Cartan inverse monoids. Then $\mathcal{E}(S_i)$ is the lattice of projections for a W^*-algebra, $\mathcal{D}_i = C(\mathcal{E}(S_i))$. The isomorphism α induces an isomorphism $\tilde{\alpha}$ from \mathcal{D}_1 to \mathcal{D}_2.

Definition

Let S_1 and S_2 be isomorphic Cartan inverse monoids. Let P_i be the partial isometries in \mathcal{D}_i. Extensions G_i of S_i by P_i are *equivalent* if there is an isomorphism $\alpha: G_1 \rightarrow G_2$ such that

$$
\begin{array}{c}
P_1 \xrightarrow{\iota_1} G_1 \xrightarrow{q_1} S_1 \\
\tilde{\alpha} \downarrow \quad \alpha \downarrow \quad \alpha \downarrow \\
P_2 \xrightarrow{\iota_2} G_2 \xrightarrow{q_2} S_2.
\end{array}
$$

commutes.
It was shown by Laush (1975) that there is one-to-one correspondence between extensions of S by P and the second cohomology group $H^2(S, P)$.

It is also shown that every extension of S by P is determined by cocycle function $\sigma: S \times S \to P$.
Theorem

Let \((\mathcal{M}_1, \mathcal{D}_1)\) and \((\mathcal{M}_2, \mathcal{D}_2)\) be two Cartan pairs with associated extensions

\[P_i \leftrightarrow G_i \rightarrow S_i \]

for \(i = 1, 2\).

There is a normal isomorphism \(\theta: \mathcal{M}_1 \rightarrow \mathcal{M}_2\) such that \(\theta(\mathcal{D}_1) = \mathcal{D}_2\) if and only if the two associated extensions are equivalent.
Let S be a Cartan inverse monoid. Let $\mathcal{D} = C(\widehat{\mathcal{E}(S)})$, and let P be the partial isometries in \mathcal{D}. Given an extension

$$P \hookrightarrow G \twoheadrightarrow S$$

we want to construct a Cartan pair $(\mathcal{M}, \mathcal{D})$ with associated extension (equivalent to) $P \hookrightarrow G \twoheadrightarrow S$.
A \mathcal{D}-valued Reproducing kernel space

Let j be an order-preserving map, $j: S \to G$ such that $j \circ q = \text{id}$. That is $j(s) \leq j(t)$ when $s \leq t$ and $j: \mathcal{E}(S) \to \mathcal{E}(G)$ is an isomorphism.
Let j be an order-preserving map, $j: S \rightarrow G$ such that $j \circ q = \text{id}$. That is $j(s) \leq j(t)$ when $s \leq t$ and $j: \mathcal{E}(S) \rightarrow \mathcal{E}(G)$ is an isomorphism.
Define a map

$$K: S \times S \rightarrow D$$

by $K(s, t) = j(s^\dagger t \wedge 1)$.

A \mathcal{D}-valued Reproducing kernel space

Let j be an order-preserving map, $j: S \to G$ such that $j \circ q = \text{id}$. That is $j(s) \leq j(t)$ when $s \leq t$ and $j: \mathcal{E}(S) \to \mathcal{E}(G)$ is an isomorphism. Define a map

$$K: S \times S \to \mathcal{D}$$

by $K(s, t) = j(s^\dagger t \wedge 1)$. The idempotent $s^\dagger t \wedge 1$ is the minimal idempotent e such that

$$se = te = s \wedge t.$$

Thus $K(s, t)$ is the idempotent in G defining $j(s) \wedge j(t)$.
Let \(j \) be an order-preserving map, \(j: S \to G \) such that \(j \circ q = \text{id} \).
That is \(j(s) \leq j(t) \) when \(s \leq t \) and \(j: \mathcal{E}(S) \to \mathcal{E}(G) \) is an isomorphism.
Define a map

\[
K: S \times S \to \mathcal{D}
\]

by \(K(s, t) = j(s^\dagger t \wedge 1) \).
The idempotent \(s^\dagger t \wedge 1 \) is the minimal idempotent \(e \) such that

\[
se = te = s \wedge t.
\]

Thus \(K(s, t) \) is the idempotent in \(G \) defining \(j(s) \wedge j(t) \).
The map \(K \) is positive: that is for \(c_1, \ldots, c_k \in \mathbb{C} \) and \(s_1, \ldots, s_k \in S \)

\[
\sum_{i,j} \overline{c_i} c_j K(s_i, s_j) \geq 0.
\]
For each $s \in S$ define a “kernel-map” $k_s : S \to D$ by

$$k_s(t) = K(t, s).$$

Let $\mathcal{A}_0 = \text{span}\{k_s : s \in S\}$. The positivity of K shows that the

$$\langle \sum c_i k_{s_i}, \sum d_j k_{t_j} \rangle = \sum_{i,j} \overline{c_i}d_j K(s_i, t_j)$$

defines a D-valued inner product on \mathcal{A}_0. Let \mathcal{A} be completion of \mathcal{A}_0. Thus \mathcal{A} is a reproducing kernel Hilbert D-module of functions from S into D.
For $g \in G$ define an adjointable operator $\lambda(g)$ on \mathcal{A} by

$$\lambda(g)k_s = k_{q(g)s}\sigma(g, s),$$

where $\sigma : G \times S \to P$ is a “cocycle-like” function (related to the cocycles of Lausch). This is determined by the equation

$$gj(s) = j(q(g)s)\sigma(g, s),$$

i.e. elements of the form $gj(s)$ can be factored into the product of an element in $j(S)$ by an element in P.
A left representation of G

For $g \in G$ define an adjointable operator $\lambda(g)$ on \mathcal{A} by

$$\lambda(g)k_s = k_{q(g)s}\sigma(g, s),$$

where $\sigma: G \times S \to P$ is a “cocycle-like” function (related to the cocycles of Lausch). This is determined by the equation

$$gj(s) = j(q(g)s)\sigma(g, s),$$

i.e. elements of the form $gj(s)$ can be factored into the product of an element in $j(S)$ by an element in P. The mapping

$$\lambda: G \to L(\mathcal{A})$$

is a representation of G by partial isometries.
Let π be a faithful representation of \mathcal{D} on a Hilbert space \mathcal{H}. We can form a Hilbert space $\mathcal{A} \otimes \pi \mathcal{H}$ by completing $\mathcal{A} \otimes \mathcal{H}$ with respect to the inner product

$$\langle a \otimes h, b \otimes k \rangle := \langle h, \pi(\langle a, b \rangle)k \rangle.$$
Let π be a faithful representation of D on a Hilbert space \mathcal{H}. We can form a Hilbert space $\mathfrak{A} \otimes_\pi \mathcal{H}$ by completing $\mathfrak{A} \otimes \mathcal{H}$ with respect to the inner product

$$\langle a \otimes h, b \otimes k \rangle := \langle h, \pi(\langle a, b \rangle)k \rangle.$$

Then π determines a faithful representation $\hat{\pi}$ of $L(\mathfrak{A})$ on the Hilbert space $\mathfrak{A} \otimes_\pi \mathcal{H}$ by

$$\hat{\pi}(T)(a \otimes h) = (Ta) \otimes h.$$
Let π be a faithful representation of D on a Hilbert space \mathcal{H}. We can form a Hilbert space $\mathcal{A} \otimes_{\pi} \mathcal{H}$ by completing $\mathcal{A} \otimes \mathcal{H}$ with respect to the inner product

$$\langle a \otimes h, b \otimes k \rangle := \langle h, \pi(\langle a, b \rangle)k \rangle.$$

Then π determines a faithful representation $\hat{\pi}$ of $L(\mathcal{A})$ on the Hilbert space $\mathcal{A} \otimes_{\pi} \mathcal{H}$ by

$$\hat{\pi}(T)(a \otimes h) = (Ta) \otimes h.$$

Thus, we have a faithful representation of G on the hilbert space $\mathcal{A} \otimes_{\pi} \mathcal{H}$ by

$$\lambda_{\pi}: g \mapsto \hat{\pi}(\lambda(g)).$$
Let $M_q = \lambda(G)''$, and $D_q = \lambda(E(S))''$. Then (M_q, D_q) is a Cartan pair such that

1. The pair (M_q, D_q) is independent of choice of j and π;
Creating Cartan pairs

Let \(\mathcal{M}_q = \lambda(G)'' \), and \(\mathcal{D}_q = \lambda(\mathcal{E}(S))'' \). Then \((\mathcal{M}_q, \mathcal{D}_q)\) is a Cartan pair such that

1. The pair \((\mathcal{M}_q, \mathcal{D}_q)\) is independent of choice of \(j\) and \(\pi\);
2. \(\mathcal{D}_q\) is isomorphic to \(\mathcal{D} = C(\widehat{\mathcal{E}(S)})\);
Creating Cartan pairs

Let $\mathcal{M}_q = \lambda(G)''$, and $\mathcal{D}_q = \lambda(\mathcal{E}(S))''$. Then $(\mathcal{M}_q, \mathcal{D}_q)$ is a Cartan pair such that

1. The pair $(\mathcal{M}_q, \mathcal{D}_q)$ is independent of choice of j and π;
2. \mathcal{D}_q is isomorphic to $\mathcal{D} = C(\widehat{\mathcal{E}(S)})$;
3. The conditional expectation $E: \mathcal{M}_q \rightarrow \mathcal{D}_q$ is induced from the map

$$S \rightarrow \mathcal{E}(S)$$

$$s \mapsto s \wedge 1.$$
Creating Cartan pairs

Let \(\mathcal{M}_q = \lambda(G)'' \), and \(\mathcal{D}_q = \lambda(\mathcal{E}(S))'' \). Then \((\mathcal{M}_q, \mathcal{D}_q)\) is a Cartan pair such that

1. The pair \((\mathcal{M}_q, \mathcal{D}_q)\) is independent of choice of \(j\) and \(\pi\);
2. \(\mathcal{D}_q\) is isomorphic to \(\mathcal{D} = C(\mathcal{E}(S))\);
3. The conditional expectation \(E: \mathcal{M}_q \to \mathcal{D}_q\) is induced from the map

\[
S \to \mathcal{E}(S) \\
s \mapsto s \land 1.
\]

4. The extension associated to \((\mathcal{M}_q, \mathcal{D}_q)\) is equivalent to

\[
P \hookrightarrow G \overset{q}{\to} S
\]

(the extension we started with).
Main Theorem

Theorem (Feldman-Moore; Donsig-F-Pitts)

If S is a Cartan inverse monoid and $P \hookrightarrow G \xrightarrow{q} S$ is an extension of S by $P := p.i.(C^*(\mathcal{E}(S)))$, then the extension determines a Cartan pair $(\mathcal{M}, \mathcal{D})$ which is unique up to isomorphism. Equivalent extensions determine isomorphic Cartan pairs.

Every Cartan pair $(\mathcal{M}, \mathcal{D})$ determines uniquely an extension of a Cartan inverse semigroup S by P, $P \hookrightarrow G \xrightarrow{q} S$.