Corners of C*-algebras

Robert Pluta

University of Iowa

INFAS 4/19/2014

Introduction

The Peirce¹ decomposition of an algebra A with respect to an idempotent $e \in A$ is

$$A = eAe \oplus eA(1-e) \oplus (1-e)Ae \oplus (1-e)A(1-e);$$

M is a bimodule over S := eAe.

The corresponding projection from A onto S,

$$\mathcal{E}: A \to A$$
 $\mathcal{E}(x) = exe \quad (x \in A),$

is an S-bimodule map (an algebraic conditional expectation).

Robert Pluta (University of Iowa)

¹Benjamin Peirce, *Linear Associative Algebra*. Amer. J. Math. 4 (1881)

Introduction

The Peirce decomposition leads to the following definition.

Definition

Let A be an algebra.

A *corner* of A is a subalgebra $S \subseteq A$ for which there is a subspace $M \subseteq A$ such that $A = S \oplus M$ and $sm, ms \in M$ for all $s \in S$, $m \in M$.

Examples include:

Peirce corners eAe.

Injective C^* -algebras.

The graph of a homomorphism between C^* -algebras.

The graph of a derivation from a C^* -algebra A to a Banach A-bimodule.

Non-example: A non-unital C^* -subalgebra of a von Neumann algebra.

(The above definition makes no reference to idempotents.)

A retraction on a topological space X is a continuous function (homeomorphism) $\tau\colon X\to X$ with $\tau\circ\tau=\tau;\ \tau(X)$ is called the retract of X.

Proposition

Let K be a compact Hausdorff space and let $\tau \colon K \to K$ be a retraction. Define

$$\mathcal{E}_{\tau} \colon C(K) \to C(K)$$
 by $\mathcal{E}_{\tau}(f) = f \circ \tau$.

Then:

- (1) \mathcal{E}_{τ} is a conditional expectation (in particular $\|\mathcal{E}_{\tau}\|=1$);
- (2) \mathcal{E}_{τ} is multiplicative;
- (3) $\ker \mathcal{E}_{\tau} = \{ f \in C(K) : f_{|\tau(K)} = 0 \}.$

Thus, every retraction τ on K gives rise to a corner in C(K).

But there are corners in C(K) which do not come from retractions on K.

Proposition.

Let $K = \{e^{i\theta} : 0 \le \theta \le 2\pi\}$ and define

$$\mathcal{E} : C(K) \to C(K)$$
 by $\mathcal{E}(f)(\zeta) = \frac{f(\zeta) + f(-\zeta)}{2}$.

Then:

- (1) $\mathcal{E} \circ \mathcal{E} = \mathcal{E}$;
- (2) $S = \mathcal{E}(C(K)) = \{ f \in C(K) : \mathcal{E}(f) = f \}$ is a closed *-subalgebra of C(K) (C^* -subalgebra);
- (3) \mathcal{E} is an S-module map (not multiplicative) and S is a corner in C(K).

There is no retraction $\tau \colon K \to K$ with $S = \{ f \in C(K) \colon f \circ \tau = f \}$.

Corollary

The functor $\tau \mapsto \mathcal{E}_{\tau}$ is not surjective.

Theorem

Let K be a compact Hausdorff space and let $\mathcal{E} \colon C(K) \to C(K)$ be a unital algebraic conditional expectation which is also an algebra homomorphism. Then there is a retraction $\tau \colon K \to K$ such that $\mathcal{E} = \mathcal{E}_{\tau}$.

Sketch of Proof:

- 1. \mathcal{E} is a contraction ($\|\mathcal{E}\| \leq 1$).
- 2. $\ker \mathcal{E}$ is a closed ideal in C(K).
- 3. There exists a closed $K_1 \subseteq K$ such that $\ker \mathcal{E} = \{ f \in C(K) : f | K_1 = 0 \}$.
- 4. There exists a retraction $\tau \colon K \to K$ with $\tau(K) = K_1$ such that $\mathcal{E} = \mathcal{E}_{\tau}$.

Theorem

Let K be a compact Hausdorff space and let $\mathcal{E}: C(K) \to C(K)$ be a unital algebraic conditional expectation which is also an algebra homomorphism.

Then there is a clopen set $L\subseteq K$ and a retraction $\tau\colon L\to L$ such that $\mathcal E$ is given by

$$\mathcal{E}(f)(t) = \begin{cases} f(\tau(t)) & \text{if } t \in L \\ 0 & \text{for } t \in K \setminus L \end{cases}$$

(for $f \in C(K)$, $t \in K$). Moreover $\mathcal{E}(\overline{f}) = \overline{\mathcal{E}f}$ for $f \in C(K)$.

Construction of L:

Let 1_K be the constant function in C(K). Then $\mathcal{E}(1_K) = \mathcal{E}(1_K \cdot 1_K) = \mathcal{E}(1_K) \cdot \mathcal{E}(1_K) = \mathcal{E}(1_K)^2$, $L = \{t \in K : \mathcal{E}(1_K)(t) = 1\}$, $\mathcal{E}(1_K) = 1_L$ (the characteristic function of L).

We have shown:

Use the the Gelfand Duality (categorical equivalence):

$$\Big(\mathsf{Compact\ Hausdorff\ spaces}\ \mathcal{K}\Big)\ \equiv\ \Big(\mathsf{Unital\ commutative}\ \mathit{C}^*\text{-algebras}\ \mathit{C}(\mathcal{K})\Big)$$

Let X be a locally compact, non-compact Hausdorff space and let $X^* = X \cup \{\omega\}$ be the space X with one point adjoined according to the recipe for the one point compactification.

We consider $C_0(X)$ as embedded in $C(X^*)$ via

$$f \mapsto \tilde{f} : C_0(X) \to C(X^*)$$

where

$$\tilde{f}(t) = \begin{cases} f(t) & \text{if } t \in X \\ 0 & \text{for } t = \omega. \end{cases}$$

Proposition

If $\tau\colon X^* o X^*$ is a retraction such that $\tau(\omega)=\omega$ then the map defined by

$$\mathcal{E}_{\tau,*}\colon C_0(X) \to C_0(X), \quad \mathcal{E}_{\tau,*}(f) = (\tilde{f} \circ \tau)|_X$$

is a conditional expectation.

In fact, every multiplicative (algebraic) conditional expectation if of this type.

Theorem

If X is a locally compact, non-compact Hausdorff space and $\mathcal{E}\colon C_0(X)\to C_0(X)$ is an algebraic conditional expectation which is also an algebra homomorphism, then there is a retraction $\tau\colon X^*\to X^*$ with $\tau(\omega)=\omega$ such that $\mathcal{E}=\mathcal{E}_{\tau,*}$.

This gives the following equivalence:

$$\Big(\mathsf{Noncommutative\ topology}\Big)\ \equiv\ \Big(\mathit{C}^*\text{-algebras}\Big)$$

Theorem

Let A be a unital C^* -algebra and let $\mathcal{E}: A \to A$ be an algebraic conditional expectation.

Then ${\mathcal E}$ is a conditional expectation (in the category of C^* -algebras) if and only if

$$\left\|\mathcal{E}(x)\right\|^2 \leq \left\|\mathcal{E}(x^*x)\right\|$$

for all $x \in A$.

Proof of this theorem relies on the **Russo-Dye** theorem (1966) which asserts that in a unital C^* -algebra, the closure of the convex hull of the unitary elements is the closed unit ball.

So if $x \in A$ has ||x|| < 1, then $||x|| \le 1 - \frac{2}{n}$ for some integer n, and (by the Russo-Dye theorem) there are unitary elements u_1, \ldots, u_n in A with $x = \frac{1}{n}(u_1 + \cdots + u_n)$.

Proposition

Let A be a unital C^* -algebra and let $\mathcal{E} \colon A \to A$ be an algebraic conditional expectation. If

$$\left\|\mathcal{E}(x)\right\|^2 = \left\|\mathcal{E}(x^*x)\right\|$$

for all $x \in A$, then ker \mathcal{E} is a closed Jordan ideal in A.

Theorem

Let A be a unital C^* -algebra and let $\mathcal{E} \colon A \to A$ be an algebraic conditional expectation. Then \mathcal{E} is a multiplicative *-homomorphism if and only if

$$\left\|\mathcal{E}(x)\right\|^2 = \left\|\mathcal{E}(x^*x)\right\|$$

for all $x \in A$.

Proof Use the Proposition and the fact that closed Jordan *-ideals in C^* -algebras are automatically 2-sided ideals.

Closure question

Does every *-corner of a commutative C^* -algebra is closed?

Theorem

Let A be a unital commutative C^* -algebras. Then there are no dense proper corner subalgebras of A.

That is: if K is a compact Hausdorff space and $S \subseteq A = C(K)$ a dense corner in A, then S = A.

Theorem

Every *-corner of a unital commutative C^* -algebra is closed.

Closure question

Theorem

If $S \subseteq A$ is a dense corner in a commutative C^* -algebra A then S = A.

Theorem

If S is a *-corner in a commutative C^* -algebra A then S is closed.

Thus, every *-corner of a commutative C^* -algebra is closed.

Closure question

Unlike conditional expectations in the category of C^* -algebras, algebraic conditional expectations need not be bounded; however, the next theorem shows that, in the commutative case, bounded conditional expectations can always be found.

Theorem

Let K be a compact Hausdorff space, and let $\mathcal{E}: C(K) \to C(K)$ be a unital algebraic *-conditional expectation.

Then there exists a bounded conditional expectation operator $\bar{\mathcal{E}}\colon \mathcal{C}(\mathcal{K})\to\mathcal{C}(\mathcal{K})$ with

 $\mathsf{range}\,\bar{\mathcal{E}}=\mathsf{range}\,\mathcal{E}.$

Corners containing diagonals

Let H be a Hilbert space with an orthonormal basis $(e_i)_{i \in I}$ (which may be countable or uncountable).

Let $\mathcal{E} \colon \mathcal{B}(\mathcal{H}) \to \mathcal{B}(\mathcal{H})$ be a linear map with range S a subalgebra such that:

$$\mathcal{E} \circ \mathcal{E} = \mathcal{E}$$
,

 ${\cal E}$ is an ${\it S}$ -bimodule map,

$$\mathcal{E}(x^*) = \mathcal{E}(x)^* \text{ for } x \in \mathcal{B}(H).$$

Theorem

If $e_i \otimes e_i^* \in S$ for $i \in I$, there is an equivalence relation on I such that $\mathcal{E}(x) = \sum_{i \in I} p_i x p_i$ for $x \in \mathcal{B}(x)$ where I is the set of equivalence classes

$$\mathcal{E}(x) = \sum_{i \in I} p_j x p_j$$
 for $x \in B(x)$, where J is the set of equivalence classes,

 $p_j = \sum_{i \in j} e_i \otimes e_i^*$ for $j \in J$, and $e_i \otimes e_i^*$ is the operator that sends an element $h \in H$ to $\langle h, e_i \rangle e_i \in H$.

This result can be generalized to expectations in purely atomic von Neumann algebras.

A method of constructing discontinuous expectations

Statement

Assuming the Continuum Hypothesis **(CH)**, there exist discontinuous algebra homomorphisms between C^* -algebras.

For example, assuming **(CH)**, there is a discontinuous algebra homomorphism $\phi \colon C([0,1]) \to B(H)$.

This is used to construct a discontinuous expectation (next slide).

A method of constructing discontinuous expectations

- Suppose $\phi: A_1 \to A_2$ is a discontinuous homomorphism between C^* -algebras A_1 and A_2 .
- Let $A = A_1 \oplus A_2$, a C^* -algebra with the summands as ideals (where we take the max norm).
- Let S be the graph of ϕ , i.e., $S = \{(x, \phi(x)) : x \in A_1\}$. Define $\mathcal{E} : A \to A$ by $\mathcal{E}(a, b) = (a, \phi(a))$.

Then \mathcal{E} is a discontinuous expectation from A onto S.

Thank you

References:

Robert Pluta, *Ranges of bimodule projections and conditional expectations*, Cambridge Scholar Publishing, 2013.