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Basics

H;,y separable Hilbert space, (en)nen ONB in H:

span{e,} = H

(en; em> = 6n,m }

v=>r (v, e e =  limpoo|lv—>0_1(v, ex)ek]| =0 J
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Basics

H, .y separable Hilbert space, (e;)ney ONB in H:

(ena em> = 6n,m

span{e,} = H

v=>r (v, e e =  limpoo|lv—>0_1(v, ex)ek]| =0

In applications:
H = L? space and v encodes a signal, state, image, measurable function.

" Good" Approximation: least mean square deviation
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Example

e Fourier: (\/%e"”x),,ez ONB on L?[—7, 7]

o Wavelet : {2"/24(2"t — k) | n,k € Z} ONB in L[%(R)
e Walsh: discrete sine-cosine versions, =1 on dyadic intervals

e (exp() - 2mx)aen exponential bases on some L2(fractals)
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Main ideas and layout of the talk:

e Cuntz relations generate a diversity of bases: Examples, Old and New
(generalized Walsh)

e Zoom in on the new Walsh, study structure properties (How different
from the old one is it ?)

e Possible applications of the generalized Walsh.
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Set Up
R- d x d expansive. B C RY, N = |B|. IFS:
m(x) = R} (x+b) (xeR? beB)

Hutchinson: 3! attractor (Xg, ug) invariant for the IFS.
g is invariant for r : Xg — Xg

r(x) = Tb_l(X), if x € 75(XB)
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Set Up
R- d x d expansive. B C RY, N = |B|. IFS:
(x) = R} (x+b) (xeR beB)

Hutchinson: 3! attractor (Xg, ug) invariant for the IFS.
g is invariant for r : Xg — Xg

r(x) = Tb_l(X), if x € 7p(XB)

Example

IFS : 7j(x) = 5, j=0,1,..,N — 1

Attractor: X = [0, 1], with A the Lebesgue measure
r(x) = Nx mod 1

IFS : 7j(x) = %, j=0,1,...,N — 1
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Cuntz Relations

Definition

N—1
" SiSi=6ijl, D SiS=1
i=0
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QMFs

QMF basis = multiresolution for the wavelet representation associated
to a filter mg.

Definition
A QMF basis is a set of N QMF's  mg, my,..., my_1 such that

N Z mi(w)mj(w) = 6z, (i,j €{0,...,N—1},z € X)
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QMF bases and Cuntz algebra representations

Proposition
Let (m,-)f\l:_O:l be a QMF basis. The operators on L?(X, )

Si(fy=mjfor, i=0,...,N—1

are isometries and form a representation of the Cuntz algebra Oy.
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Main Result

Theorem

H Hilbert space, (S;)™- o} Cuntz representation of Oy.
& orthonormal, X top.space, f : X — H norm continuous function and:
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Main Result

Theorem

H Hilbert space, (S;)™- o} Cuntz representation of Oy.

& orthonormal, X top.space, f : X — H norm continuous function and:
0 £=ulMlse.
@ span{f(t):te X} =H and ||f(t)||=1, for all t € X.
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Main Result

Theorem

H Hilbert space, (S;)™- o} Cuntz representation of Oy.

& orthonormal, X top.space, f : X — H norm continuous function and:

0 £=Ul!se.
@ span{f(t):te X} =H and ||f(t)||=1, for all t € X.

© on the range of f the Cuntz isometries are like
"multiplication-dilation” operators

© I oy € X such that f(cp) € Span€.
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Main Result

Theorem

H Hilbert space, (S;)™- o} Cuntz representation of Oy.

& orthonormal, X top.space, f : X — H norm continuous function and:

0 £=Ul!se.

@ span{f(t):te X} =H and ||f(t)||=1, for all t € X.

© on the range of f the Cuntz isometries are like
"multiplication-dilation” operators

© I oy € X such that f(cp) € Span€.

© If the Ruelle (transfer) operator admits as fixed point a function h
constant on f~1(spanf) then h is constant.
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Main Result

Theorem

H Hilbert space, (S;)™- o} Cuntz representation of Oy.

& orthonormal, X top.space, f : X — H norm continuous function and:

0 £=Ul!se.

@ span{f(t):te X} =H and ||f(t)||=1, for all t € X.

© on the range of f the Cuntz isometries are like
"multiplication-dilation” operators

© I oy € X such that f(cp) € Span€.

© If the Ruelle (transfer) operator admits as fixed point a function h
constant on f~1(spanf) then h is constant.

Then & is an orthonormal basis for H.
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In applications:

o f(t) = exp: on L?(Xg, ug)

e Si(g) =egor, (B,L) Hadamard pair

N—1
 Si(g) =migor, mi = \/NZJ':O 2 Xpj/n,G+1)/M)

e & ={5,05,0---05(exp_c)}, ¢ extreme cycle point.

o &={Sp05,0---05,(1)}
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Consequences

l-dimensional: 0 e BC R, R>1, %B admits a set L as spectrum.

Cl. & ={Su(exp_c) : c extreme cycle point} is ONB in L?(ug) made of
piecewise exponential functions.

S-S e_c(x) = e (x)en(rx)...e;, (r"1x)ec(r"x)

C2. When B C Z, L CZ, and R € Z then 3N such that {e) : A € A} is
ONB for L?(ug).
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Consequences
l-dimensional: 0 e BC R, R>1, %B admits a set L as spectrum.

Cl. & ={Su(exp_c) : c extreme cycle point} is ONB in L?(ug) made of
piecewise exponential functions.

S-S e_c(x) = e (x)en(rx)...e;, (r"1x)ec(r"x)

C2. When B C Z, L CZ, and R € Z then 3N such that {e) : A € A} is
ONB for L?(ug).

Example

Cantor’s (Xy/4, p11/4) admits exp ONB: R = 4, B = {0,2}, spectrum
L={0,1}

Example

R=3,B=1{0,2}, L=1{0,3} spectrum of %B: Middle third Cantor set
which is known not to admit exponential bases.

18 /91



Consequences

C3. Walsh Bases: [0,1] is the attractor of the IFS: Tox = %, 1x = %51

rx = 2xmodl. mo =1, m1 = X[0,1/2) — X[1/2,1) form a QMF basis.
E:={S,1:w e {0,1}*} is an ONB for L?]0,1], the Walsh basis.

Description: For n = ZL:O ix2k, the n'th Walsh function :

Wi(x) = mjg(x) - my (rx) - - m; (r'x) = Spjy..i1
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Walsh bases
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Walsh bases
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Walsh bases

s

n

=]

22/91



Walsh bases
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Walsh bases
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Walsh bases
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Walsh bases
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Walsh bases
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Walsh bases
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Walsh bases
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Walsh bases
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Generalized Walsh bases

C4. Let A=aj] a N x N unitary matrix, aij = ﬁ
N-1
mi(x) = VN Y 3, ngiaym (%)
j=0

r(x) = Nxmod1, n =", _, ik N* with iy € {0,1,.., N — 1}.

The n'th generalized Walsh function :

Waa(x) = mig(x) - miy (rx) -+ mi (r'x)

The set (Wy a)nen is ONB in L2[0,1].
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Generalized Walsh bases

Example

We will graph a few generalized Walsh functions that correspond to 4 x 4
matrix

Ni= O Ml N|—=
S

Nl O m|§m|»—t
|S O NI
N

I mlﬂ Nl
=N O N

N =N
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Generalized Walsh bases
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Generalized Walsh bases

01
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Generalized Walsh bases

02
f
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Generalized Walsh bases
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Generalized Walsh bases
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Generalized Walsh bases

11
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Generalized Walsh bases
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Generalized Walsh bases

13
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Generalized Walsh bases
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Generalized Walsh bases
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Generalized Walsh bases
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Generalized Walsh bases
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Generalized Walsh bases
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Generalized Walsh bases
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Generalized Walsh bases
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3
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Generalized Walsh bases

48 /91



Example

We will graph a few generalized Walsh functions that correspond to 3 x 3
matrix
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Generalized Walsh bases
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Generalized Walsh bases
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Generalized Walsh bases
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Generalized Walsh bases

(=]
1

'
]
L

01

04

0.6

038

53 /91



Generalized Walsh bases
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Generalized Walsh bases

04

0.6

55/91



Generalized Walsh bases
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Generalized Walsh bases

(=]
1

'
]
L

57 /91



Generalized Walsh bases
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Generalized Walsh bases




Generalized Walsh bases
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Some differences

The classic Walsh functions form a group :

Wi(x) - Win(x) = Wagm(x)

124

104

84

02 04 06 038 1

Figure: Graph of W{A = (W, a)n does not form a group
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Convergence properties

Theorem
For f € L]0, 1] the sequence

NI—1

Sna(x) = D (F, Waa) Waa(x)
n=0

converges a.e. to f(x).

Corollary

If f € L10,1] is continuous in a neighborhood of x = a then Syq — f
uniformly inside an interval centered at a.
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Approximation issues

Example

oy [ 0 x€[0,1/16)U[1/8,3/16) U[1/4,1/2)
(x) _{ 1, x€[1/16,1/8)U[3/16,1/4) U[1/2,1]

With generalized Walsh ONB to the unitary matrix

1 1 1

Vi V3 3
sl 0
_V6 V6 V6

6 3 6
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Figure: Graph of f and Sy7(f)
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Figure: Graph of f and Ss6(f)
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uag

Figure: Graph of f and Seo(f)
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Figure: Graph of f and Sgi1(f)
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=

Figure: Graph of f and Sigo(f)
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Figure: Graph of f and Sxo(f)
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1.2

0.6

0.44

Figure: Graph of f and Sy (f)
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Figure: Graph of f and Szpo(f)
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Symmetric encryption

Corollary

If f 1 [0,1] — C is constant on the interval l; := [j/N9,(j +1)/N9) for
some j € {0,1,.., N9 — 1}, then for all x € I; :

N9—1

Fx) = D (F, Waa) Waa(x)

n=0

f(x)=vj, xel,j=0,...,N9 -1

The sequence (f , W, o) encrypts f with respect to a secret matrix A.
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Example

f = "abcadbcad” is encoded as
a, = [1.333333333, —.2024226815, .1819316687, —.4048453629,
5672104250, .3354086404, .3638633377,.7203088198, 0.9945624111e — 1]

1 1
V3 V3
A =10.25301205

*
* *

* *&‘I—i
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Example
Given the previous sequence a, and slightly " perturbed” matrix

11 1
. V3 V3 V3
A=102 =« *
* * *

02 04 06 08 1
x

Figure: Graph of >~ a,W, 4
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Continuity w.r.t. matrix entries

. NI—1
For a fixed sequence (a,),_,~ the map
N9—1
2 o .
RV s A— E anW, a is continuous
n=0

To strengthen the "encryption” : f — (f , W, a) + extra, e.g.
(—1)"Msin(1/2%)
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Previous example, now with entry a = 0.25301204

20

I
X 02 L i 1—o| Hox 1

Figure: Graph of 37 a,W, 4
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Encryption/Compression with Cuntz

o QMF basis mi(x) := VN 16" 3, 0 11y (X)
e Si(f)=mifor
o 5/ (f) = NZk 0 ml(%k)'f(%)

signal f = [S7(f)]i=o,n—1 (i.e. f encrypted).

Compress [S;k(f)],'zo,/\/_l.
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Example

Figure: Signal f, piece wise constant on tri-adic intervals
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Example

0074 0181 02960370 56063 0741 LG'?&J
x

Figure: First frequency band, signal 5§ f
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Example

0.4

024

—

Figure: 2" frequency band, signal S;f

063 074

096
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Example

HHH |
02 |i||i| s

Figure: 3 frequency band, signal S; f
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A cryptographic protocol

e H; space of messages, H» the space of encrypted messages

e Assume plenty of operators A : Hi — H» and B : Hy — H» such that

BloAoB loA=Iy

"Ping-pong” messaging (also Eve is eavesdropping):

1) Alice to Bob: wy = A(v) € H,

2) Bob to Alice: wo = B71A(v) € Hy
3) Alice to Bob: w3 = AB71A(v) € H,
4) Bob applies B! to ws.
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Bad choices

o A(f)(x) = f(x+ a), B(f) =f(x+ b)
f can be detected from its translations

o A(F)(x) = F(x), B(f)(x) = f(x°)
dilation/compression, some of f could be guessed, issues with the domain

v

e More generally f € G, G Abelian group: Ax = ax, Bx = bx.
Previous ping-pong:

w1 = af,

ws = b~ lw; = Eve can figure out b = W2_1W1

w3 = a ‘wp, = b~'f = Eve multiplies by b and reveals f
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Transforms commutation

A, B unitary N x N matrices having constant 1/\/N first row.
Wa : L2[0,1] — A(N), Wa(f) = (f, Wy.a) 50

The inverse tranform (only needed for finite sequences ) :
1( an n Zan n,A

Question: Given f under what conditions for A and B does the

"ping-pong” protocol work?

ng o Wa o)/\/,g1 oWa(f) ="
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Theorem

If (row g, row i a) = (row a, row y g) forall k,Iin{1,2,3,...,N}

then Vf piecewise constant on consecutive N-adic intervals :

Wg' o WaoWgt o Wa(f) =f

85/91



Theorem

If (row g, row i a) = (row a, row y g) forall k,Iin{1,2,3,...,N}

then Vf piecewise constant on consecutive N-adic intervals :

Wg' o WaoWgt o Wa(f) =f

N = 3 one equation is relevant:

R ER S E) R I E)
z a b c
i q r d e i
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Protocol set up

o Alice has A = [a; j['/—;"), with real number entries.

@ Bob receives from Alice:

N N
Z agixjj = Z ajxg, Vi<I<k<N | - masking coefficients
j=1 j=1
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Protocol set up

. =1,N . .
o Alice has A = [a; j['/—;"), with real number entries.
@ Bob receives from Alice:

N N
Z agixjj = Z ajxg, Vi<I<k<N | - masking coefficients
j=1 j=1

e B= [x,d]flj,’:,l must be unitary:

xij=1/VN, Vj=1,.,N

SN P=1, Vi=2,.,N

SN ixij=0, Vi=2..,N

S Xk Xk=0, VI<i<j<N

System of N2 — N quadratics with N2> — N unknowns.
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Question

Are there infinitely many A for which the previous system has infinitely
many solutions?
Study their Grobner bases.
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Question

Are there infinitely many A for which the previous system has infinitely
many solutions?
Study their Grobner bases.

Example

There are infintely many B transform " commuting” with

< Sl

A=

ol NG
R N
|

ol
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Thank you!
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