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Basics

H〈 , 〉 separable Hilbert space, (en)n∈N ONB in H:

〈en , em〉 = δn,m

span{en} = H

v =
∑∞

k=1 〈v , ek〉 ek ⇐⇒ limn→∞ ||v −
∑n

k=1 〈v , ek〉 ek || = 0

In applications:
H = L2 space and v encodes a signal, state, image, measurable function.

”Good” Approximation: least mean square deviation
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Example

• Fourier: ( 1√
2π
e inx)n∈Z ONB on L2[−π, π]

• Wavelet : {2n/2ψ(2nt − k) | n, k ∈ Z} ONB in L2(R)

• Walsh: discrete sine-cosine versions, ±1 on dyadic intervals

• (exp(λ · 2πx)λ∈Λ exponential bases on some L2(fractals)
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Main ideas and layout of the talk:

• Cuntz relations generate a diversity of bases: Examples, Old and New
(generalized Walsh)

• Zoom in on the new Walsh, study structure properties (How different
from the old one is it ?)

• Possible applications of the generalized Walsh.
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Set Up

R- d × d expansive. B ⊂ Rd , N = |B|. IFS:

τb(x) = R−1(x + b) (x ∈ Rd , b ∈ B)

Hutchinson: ∃! attractor (XB , µB) invariant for the IFS.
µB is invariant for r : XB → XB

r(x) = τ−1
b (x), if x ∈ τb(XB)

Example

IFS : τj(x) = x+j
N , j = 0, 1, ...,N − 1

Attractor: X = [0, 1], with λ the Lebesgue measure

r(x) = Nx mod 1

IFS : τj(x) = x+j
N , j = 0, 1, ...,N − 1
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Cuntz Relations

Definition

ON : S∗i Sj = δi ,j I ,
N−1∑
i=0

SiS
∗
i = I
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QMFs

QMF basis =⇒ multiresolution for the wavelet representation associated
to a filter m0.

Definition

A QMF basis is a set of N QMF’s m0,m1, . . . ,mN−1 such that

1

N

∑
r(w)=z

mi (w)mj(w) = δij , (i , j ∈ {0, . . . ,N − 1}, z ∈ X )
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QMF bases and Cuntz algebra representations

Proposition

Let (mi )
N−1
i=0 be a QMF basis. The operators on L2(X , µ)

Si (f ) = mi f ◦ r , i = 0, . . . ,N − 1

are isometries and form a representation of the Cuntz algebra ON .
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Main Result

Theorem

H Hilbert space, (Si )
N−1
i=0 Cuntz representation of ON .

E orthonormal, X top.space, f : X → H norm continuous function and:

1 E = ∪N−1
i=0 SiE .

2 span{f (t) : t ∈ X} = H and ||f (t)||= 1, for all t ∈ X.

3 on the range of f the Cuntz isometries are like
”multiplication-dilation” operators

4 ∃ c0 ∈ X such that f (c0) ∈ spanE .

5 If the Ruelle (transfer) operator admits as fixed point a function h
constant on f −1(spanE) then h is constant.

Then E is an orthonormal basis for H.
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In applications:

• f (t) = expt on L2(XB , µB)

• Sl(g) = elg ◦ r , (B, L) Hadamard pair

• Si (g) = mig ◦ r , mi =
√
N
∑N−1

j=0 aijχ[j/N,(j+1)/N]

• E = {Sl1 ◦ Sl2 ◦ · · · ◦ Sln(exp−c)}, c extreme cycle point.

• E = {Si1 ◦ Si2 ◦ · · · ◦ Sin(1)}
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Consequences
1-dimensional: 0 ∈ B ⊂ R, R > 1 , 1

RB admits a set L as spectrum.

C1. E = {Sw (exp−c) : c extreme cycle point} is ONB in L2(µB) made of
piecewise exponential functions.

Sl1 ...Slne−c(x) = el1(x)el2(rx)...eln(rn−1x)ec(rnx)

C2. When B ⊂ Z, L ⊂ Z, and R ∈ Z then ∃Λ such that {eλ : λ ∈ Λ} is
ONB for L2(µB).

Example

Cantor’s (X1/4, µ1/4) admits exp ONB: R = 4, B = {0, 2}, spectrum
L = {0, 1}

Example

R = 3, B = {0, 2}, L = {0, 3
4} spectrum of 1

3B: Middle third Cantor set
which is known not to admit exponential bases.
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Consequences

C3. Walsh Bases: [0, 1] is the attractor of the IFS: τ0x = x
2 , τ1x = x+1

2 .

rx = 2xmod1. m0 = 1, m1 = χ[0,1/2) − χ[1/2,1) form a QMF basis.

E := {Sw1 : w ∈ {0, 1}∗} is an ONB for L2[0, 1], the Walsh basis.

Description: For n =
∑l

k=0 ik2k , the n’th Walsh function :

Wn(x) = mi0(x) ·mi1(rx) · · ·mil (r
lx) = Si0i1...il 1
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Walsh bases
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Generalized Walsh bases

C4. Let A = [aij ] a N × N unitary matrix, a1j = 1√
N

.

mi (x) :=
√
N

N−1∑
j=0

aijχ[j/N,(j+1)/N]
(x)

r(x) = Nxmod1, n =
∑l

k=0 ikN
k with ik ∈ {0, 1, ..,N − 1}.

The n’th generalized Walsh function :

Wn,A(x) = mi0(x) ·mi1(rx) · · ·mil (r
lx)

The set (Wn,A)n∈N is ONB in L2[0, 1].
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Generalized Walsh bases

Example

We will graph a few generalized Walsh functions that correspond to 4× 4
matrix

A =


1
2

1
2

1
2

1
2√

2
2 −

√
2

2 0 0

0 0
√

2
2 −

√
2

2
1
2

1
2 −1

2 −1
2


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Example

We will graph a few generalized Walsh functions that correspond to 3× 3
matrix

A =


1√
3

1√
3

1√
3√

2
2 0 −

√
2

2

−
√

6
6

√
6

3 −
√

6
6


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Some differences

The classic Walsh functions form a group :

Wn(x) ·Wm(x) = Wn⊕m(x)

Figure: Graph of W 4
7,A ⇒ (Wn,A)n does not form a group
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Convergence properties

Theorem

For f ∈ L1[0, 1] the sequence

SNq(x) =
Nq−1∑
n=0

〈f , Wn,A〉Wn,A(x)

converges a.e. to f (x).

Corollary

If f ∈ L1[0, 1] is continuous in a neighborhood of x = a then SNq → f
uniformly inside an interval centered at a.
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Approximation issues

Example

f (x) =

{
0, x ∈ [0, 1/16) ∪ [1/8, 3/16) ∪ [1/4, 1/2)
1, x ∈ [1/16, 1/8) ∪ [3/16, 1/4) ∪ [1/2, 1]

With generalized Walsh ONB to the unitary matrix

A =


1√
3

1√
3

1√
3√

2
2 0 −

√
2

2

−
√

6
6

√
6

3 −
√

6
6


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Figure: Graph of f and S27(f )
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Figure: Graph of f and S36(f )
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Figure: Graph of f and S60(f )
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Figure: Graph of f and S81(f )
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Figure: Graph of f and S100(f )
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Figure: Graph of f and S200(f )
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Figure: Graph of f and S241(f )
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Figure: Graph of f and S300(f )
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Symmetric encryption

Corollary

If f : [0, 1]→ C is constant on the interval Ij := [j/Nq, (j + 1)/Nq) for
some j ∈ {0, 1, ..,Nq − 1}, then for all x ∈ Ij :

f (x) =
Nq−1∑
n=0

〈f , Wn,A〉Wn,A(x)

f (x) = vj , x ∈ Ij , j = 0, . . . ,Nq − 1.

The sequence 〈f , Wn,A〉 encrypts f with respect to a secret matrix A.
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Example

f = ”abcadbcad” is encoded as
an = [1.333333333,−.2024226815, .1819316687,−.4048453629,
.5672104250, .3354086404, .3638633377, .7203088198, 0.9945624111e − 1]

A =

 1√
3

1√
3

1√
3

0.25301205 ∗ ∗
∗ ∗ ∗



73 / 91

gabriel.picioroaga
Highlight



Example

Given the previous sequence an and slightly ”perturbed” matrix

Ã =

 1√
3

1√
3

1√
3

0.2 ∗ ∗
∗ ∗ ∗



Figure: Graph of
∑

anWn,Ã
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Continuity w.r.t. matrix entries

For a fixed sequence (an)N
q−1

n=0 the map

RN2 3 A→
Nq−1∑
n=0

anWn,A is continuous

To strengthen the ”encryption” : f → 〈f , Wn,A〉+ extra, e.g.
(−1)nM sin(1/a2)
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Previous example, now with entry a = 0.25301204

Figure: Graph of
∑

anWn,Ã
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Encryption/Compression with Cuntz

• QMF basis mi (x) :=
√
N
∑N−1

j=0 aijχ[j/N,(j+1)/N]
(x)

• Si (f ) = mi f ◦ r

• S∗i (f ) = 1
N

∑N−1
k=0 mi (

x+k
N ) · f ( x+k

N )

signal f ⇒ [S∗i (f )]i=0,N−1 (i.e. f encrypted).

Compress [S∗i (f )]i=0,N−1.
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Example

Figure: Signal f , piece wise constant on tri-adic intervals
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Example

Figure: First frequency band, signal S∗
0 f
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Example

Figure: 2nd frequency band, signal S∗
1 f
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Example

Figure: 3rd frequency band, signal S∗
2 f
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A cryptographic protocol

• H1 space of messages, H2 the space of encrypted messages

• Assume plenty of operators A : H1 → H2 and B : H1 → H2 such that

B−1 ◦ A ◦ B−1 ◦ A = IH1

”Ping-pong” messaging (also Eve is eavesdropping):

1) Alice to Bob: w1 = A(v) ∈ H2

2) Bob to Alice: w2 = B−1A(v) ∈ H1

3) Alice to Bob: w3 = AB−1A(v) ∈ H2

4) Bob applies B−1 to w3.
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Bad choices

• A(f )(x) = f (x + a), B(f ) = f (x + b)
f can be detected from its translations

• A(f )(x) = f (xa), B(f )(x) = f (xb)
dilation/compression, some of f could be guessed, issues with the domain

• More generally f ∈ G, G Abelian group: Ax = ax, Bx = bx.
Previous ping-pong:

w1 = af ,
w2 = b−1w1 ⇒ Eve can figure out b = w−1

2 w1

w3 = a−1w2 = b−1f ⇒ Eve multiplies by b and reveals f
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Transforms commutation

A, B unitary N × N matrices having constant 1/
√
N first row.

WA : L2[0, 1]→ l2(N), WA(f ) = 〈f , Wn,A〉n≥0

The inverse tranform (only needed for finite sequences ) :

W−1
A ((an)n) =

∑
n

anWn,A

Question: Given f under what conditions for A and B does the

”ping-pong” protocol work?

W−1
B ◦WA ◦W−1

B ◦WA(f ) = f
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Theorem

If 〈row l ,B , row k,A〉 = 〈row l ,A , row k,B〉 for all k , l in {1, 2, 3, ...,N}

then ∀f piecewise constant on consecutive N-adic intervals :

W−1
B ◦WA ◦W−1

B ◦WA(f ) = f

N = 3 one equation is relevant:
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Protocol set up

Alice has A = [ai ,j ]
j=1,N
i=1,N with real number entries.

Bob receives from Alice:

N∑
j=1

akjxlj =
N∑
j=1

aljxkj , ∀1 < l < k ≤ N | ·masking coefficients

B = [xi ,j ]
j=1,N
i=1,N must be unitary:

x1,j = 1/
√
N, ∀j = 1, ...,N∑N

j=1 |xi ,j |2 = 1, ∀i = 2, ...,N∑N
j=1 xi ,j = 0, ∀i = 2, ...,N∑N
k=1 xi ,k · xj ,k = 0, ∀1 < i < j ≤ N

System of N2 − N quadratics with N2 − N unknowns.
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Question

Are there infinitely many A for which the previous system has infinitely
many solutions?
Study their Grobner bases.

Example

There are infintely many B transform ”commuting” with

A =


1√
3

1√
3

1√
3√

2
2 0 −

√
2

2

−
√

6
6

√
6

3 −
√

6
6


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Thank you!
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