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C∗-algebras generated by partial isometries

1 C∗(T ), T is the unilateral shift T ∗T = I

2 Toeplitz-Cuntz algebras: T On generated by isometries T1, . . . ,Tn

with mutually orthogonal ranges.

3 Cuntz algebras: On generated by isometries T1, . . . ,Tn such that∑
TiTi

∗ = I

4 Graph algebras: C∗(Γ), Γ a directed graph
Se , e an edge Pv , v a vertex
Cuntz-Krieger relations:

· S∗
e Se = Ps(e)

· Pv =
∑

SeS
∗
e (over all directed edges with range v)

5 Tiling C∗-algebras: Kellendonk’s algebra of an aperiodic tiling
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The generating set in each case is an inverse semigroup.

Definition

A semigroup S is an inverse semigroup if for each s there exists unique
s∗ such that s = ss∗s and s∗ = s∗ss∗.

Structure of inverse semigroups:

idempotents: E = E (S) = {s : s2 = s} a commutative subsemigroup.

partial order: s ≤ t if and only if s = te for some e ∈ E .

minimal group congruence σ: sσt iff se = te for some e ∈ E .

group homomorphic image: G (S) = S/σ
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The Bicyclic Monoid

B = < t : t∗t = 1 >

Every word in t, t∗ reduces to t i t∗j (e.g. t2t∗t4t∗3 = t5t∗3).

B ∼= N× N (i , j)(m, n) =

{
(i + m − j , n) if m ≥ j
(i , n + j −m) otherwise

idempotents: E (B) = {(m,m) : m ∈ N}

partial order: (i , j)(m,m) =

{
(i + m − j ,m) if m ≥ j
(i , j) otherwise

min. group congruence: (i , j)σ(m, n) iff i − j = m − n

group image: G (S) = Z
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Other Examples

1 polycyclic (Cuntz) Pn =< a1, . . . an : a∗i ai = 1, a∗i aj = 0 i 6= j >

2 McAlister Mn =< a1, . . . an : aia
∗
j = a∗i aj = 0 i 6= j >

3 graph inv. semigroups Γ - directed graph Γ∗ - path category

SΓ = {(α, β) : s(α) = s(β)} ∪ {0}

(α, β)(µ, ν) =


(αµ, ν) βµ = µ

(α, νβ) µν = β
0 otherwise

4 tiling semigroups
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E -unitary inverse semigroups

Each of the previous examples is E - or 0-E -unitary.

S is E-unitary if: e ≤ s, e2 = e implies s2 = s.

Theorem: S is E -unitary iff S → G (S) is idempotent pure.

S is 0-E -unitary if: e ≤ s, e2 = e 6= 0 implies s2 = s.

S is strongly 0-E -unitary iff ∃S → G 0 that is idempotent pure.
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McAlister’s P-theorem

If S is E-unitary then the map s 7→ (ss−1, σ(s)) from S → E × G is
injective.

P-theorem (McAlister): If S is E -unitary then G acts partially on E and
S = E ×α G

Question: What is the correct structure theorem for the C ∗-algebras of
E -unitary inverse semigroups?
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C ∗-algebras of inverse semigroups

left regular representation: Define Λ : S → B(`2(S)) by

Λ(a)δb =

{
δab if a∗ab = b
0 otherwise

Definition

C ∗(S) := CS‖·‖u where ‖ f ‖u:= sup{‖π(f )‖} over all π : S → B(H).

C ∗r (S) := Λ(C ∗(S))
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G “acting” on C ∗(E )

1 C ∗(E ) = C0(Ê )

2 Ê = {x : E → {0, 1} : x(0) = 0} = { filters x ⊆ E : 0 6∈ x }
3 Let D(e) = {x ∈ Ê : x(e) = 1}. Then S acts on Ê by

homeomorphisms βs : D(s∗s)→ D(ss∗) where

βs(x)(e) = x(s∗es)

4 For S E -unitary, G acts by αg = ∪βs where s ∈ σ−1(g).

Note: Not an action in the usual sense, so we shouldn’t nec. expect a
crossed product theorem.
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Paterson’s groupoid

Paterson defined a groupoid G(S) that is a groupoid of germs for the
above action of S .

G(S) is the set of equiv. classes of pairs (s, x) (s ∈ S , x ∈ D(s∗s)) where
(s, x) ∼ (t, y) if x = y and ∃u ≤ s, t with x ∈ D(u∗u).

[s, x ][t, y ] = [st, y ] provided x = βt(y)

Theorem: (Paterson) C ∗(S) = C ∗(G(S)) and C ∗r (S) = C ∗r (G(S)).
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Khoshkam and Skandalis

Gave conditions on a cocycle ρ : G → G so that C ∗(G) is Morita
equivalent to C0(X )×α G .

Let X = G (0). The conditions are:

1 (faithful) γ 7→ (r(γ), ρ(γ), s(γ)) is injective from G into X × G × X ,

2 (closed) γ 7→ (r(γ), ρ(γ), s(γ)) is closed, and

3 (transverse) (g , γ) 7→ (gρ(γ), s(γ)) from G × G → G × X is open.

Theorem (K. and S.) If ρ : G → G satisfies (1) - (3) above, then C ∗(G) is
Morita equivalent to C0(Y )×α G and C ∗r (G) is Morita equivalent to
C0(Y )×α,r G .
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Applications to inverse semigroups

K. and S. applied their results to Paterson’s groupoid G(S).

σ : S → G induces a cocycle ρ : G(S)→ G . The conditions (1)-(3) are
satisfied provided

1 S is E -unitary.

2 σ : S → G satisfies the KS condition: eSg f is finitely generated as
an order ideal.

Cor: (K. and S.) If S is E -unitary and satisfies the KS condition then
C ∗(S) is Morita equivalent to C0(Y )×α G and C ∗r (S) is Morita equivalent
to C0(Y )×α,r G .
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The KS condition does not include all inverse semigroups, but it does
include a large class called the F -inverse semigroups.

Graph inverse semigroups SΓ, for example, are 0-F -inverse.

We would still like a crossed product theorem that applies in the same
generality as the P-theorem.
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Partial Crossed Products

Partial action α of G on a C∗-algebra A:
closed ideals {Ag}g∈G of A isomorphisms αg : Ag−1 → Ag such that

1 Ae = A

2 αgh extends αgαh

Covariant representation (π, u) of (A,G , α):
π : A→ B(H) a rep. of A
u : G → B(H) a partial rep. of G :

1 ug is a partial isometry for all g in G

2 ugh extends uguh
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Partial Crossed Products

The partial crossed product A×α G is built from summable f : G → A
and is universal for covariant representations (π, u) of (A,G , α).

History:

1 (Nica, 1992) Studied C∗-algebras of quasi-lattice ordered groups G .
Such an algebra has a large abelian subalgebra D and an expectation
ε : A→ D. Nica remarks that there is a “crossed product-like
structure” of D by G .

2 (Exel, 1994) Studied A×α Z, a crossed product by a single partial
automorphism.

3 (McClanahan, 1995) Partial crossed products by arbitrary discrete
groups.

4 (Quigg and Raeburn, 1997) Identified Cuntz algebras and Nica’s
algebras as partial crossed products.
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Isomorphism Theorem

Suppose S is strongly 0-E -unitary with group image G . The partial action
of G on E extends to C ∗(E )

Cg−1 = span
(⋃

s∈ϕ−1(g) Es∗s
)

For an idempotent x in Cg−1 , αg (x) := sxs∗, where s in S is any element
such that x ≤ s∗s and ϕ(s) = g

Theorem (M., Steinberg) Let S be strongly 0-E -unitary. Then
C ∗(S) ∼= C ∗(E )×α G and C ∗r (S) ∼= C ∗(E )×r , α G .
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C ∗(S) ∼= C ∗(E )×α G

The crossed product is the closed span of Fs : G → C ∗(E ) where

Fs(g) =

{
ss∗ if σ(s) = g
0 otherwise

s 7→ Fs extends to a surjection C ∗(S)→ C ∗(E )×α G

For injectivity, we need to know a representation π : S → B(H)
induces a covariant representation of (πE , πG ) of (C ∗(E ),G , α).
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Defining (πE , πG )

Lemma: If X is a set of compatible partial isometries then there

exists a partial isometry
∨

T∈X

A that extends every operator in X .

If σ(s) = σ(t) in G then st∗, s∗t ∈ E . Thus π(s), π(t) are compatible
partial isometries.

πG (g) :=
∨

σ(s)=g

π(s) is a partial representation of G and (πE , πG ) is

a covariant representation.
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Limitations of C∗(S)

The crossed product theorem applies to all semigroups mentioned so far,
including polycyclic (Cuntz), graph inverse, and tiling semigroups.
However, in each case C ∗(S) ∼= C ∗(E )×α G is lacking the Cuntz-Krieger
type relations.

To fix this, one must restrict the representations of S considered in some
way.

Recall, C ∗(E ) = C0( Ê ), where

Ê = {x : E → {0, 1} : x(0) = 0} = { filters x ⊆ E : 0 6∈ x }
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Enforcing Cuntz-Krieger Relations

In order to enforce Cuntz-Krieger type relations on general inverse
semigroups, Exel introduced the notion of the tight algebra of S .

Exel defined Ê∞ to be the ultrafilters in Ê and

Êtight = Ê∞.

Then S acts on Êtight partially and the tight algebra of S is defined as

a crossed product of C0(Êtight) by S . (Defined as a groupoid algebra
for the groupoid of germs of the action.)
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Tight C∗-algebra C ∗tight(S)

The tight algebra of S gives the correct C ∗-algebra in many cases.

Pn On

SΓ C ∗(Γ)

tiling Kellendonk’s
semigroups C∗-algebra

Theorem (M., Steinberg) Let S be strongly 0-E -unitary. Then Êtight is

invariant for the partial action α of G on Ê and
C ∗tight(S) ∼= C0(Êtight)×α G .
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The crossed product result encompasses other results in the literature:

(Quigg, Raeburn)
1 T On = D ×α F
2 C∗(G ,P) = D ×α G (Nica’s quasi-lattice ordered group (G ,P).

(Crip, Laca) C (∂Ω)× G
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Structure of partial crossed products

Having a partial crossed product by a group has some advantages.

Results of Exel, Laca, Quigg (2002):

If α is topologically free then a representation of C0(X )×r ,α G is
faithful if and only if it is faithful on C0(X ).

If α is topologically free and minimal then C0(X )×r ,α G is simple.

If α is topologically free on closed invariant subsets of X and α has
the approximation property then U 7→ 〈C0(U)〉 is a lattice
isomorphism between open invariant subset of U and ideals in
C0(X )×α G
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Partial dynamical properties for inverse semigroups

Let S be strongly 0-E -unitary and α the partial action of G on C0(Ê )

If S is combinatorial then α is topologically free.

Pn, SΓ, and one-dimensional tiling semigroups have the approximation
property.
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Question: Is there a connection between partial crossed products and the
results of Khoshkam and Skandalis?

Theorem: (Abadie) Let α be a partial action of G on the locally compact
Hausdorff space X . Then C ∗(G ×α X ) = C0(X )×α G .

From α, G , and X , Abadie constructs the enveloping action α̂ of G on
the space Y = (G × X )/ ∼.
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Theorem: (Abadie) Let α̂ be the enveloping action of α on the space Y .
If Y is Hausdorff, then C0(X )×α G is Morita equivalent to C0(Y )×bα G .

Moreover, the map ρ : G ×α X → G is a faithful, transverse cocycle. The
results of Abadie imply that ρ is closed if and only if the enveloping space
Y is Hausdorff.
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To summarize:

1 G(S) = Ê ×β S .

2 If S is strongly 0-E -unitary then G partially acts on Ê and
G(S) = Ê ×α G .

3 If S also satisfies the KS condition, then C ∗(S) is Morita equivalent
to a full crossed product C0(Y )×α G .
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