Crossed product results for inverse semigroup algebras

David Milan Benjamin Steinberg

U. Texas at Tyler Carleton University

April 14, 2012

C*-algebras generated by partial isometries

- **1** $C^*(T)$, T is the unilateral shift $T^*T = I$
- **2 Toeplitz-Cuntz algebras**: TO_n generated by isometries T_1, \ldots, T_n with mutually orthogonal ranges.
- **3 Cuntz algebras**: \mathcal{O}_n generated by isometries T_1, \ldots, T_n such that $\sum T_i T_i^* = I$
- Graph algebras: $C^*(\Gamma)$, Γ a directed graph S_e , e an edge P_v , v a vertex Cuntz-Krieger relations:
 - $\cdot S_e^* S_e = P_{s(e)}$
 - $P_v = \sum S_e S_e^*$ (over all directed edges with range v)
- Tiling C*-algebras: Kellendonk's algebra of an aperiodic tiling

The generating set in each case is an inverse semigroup.

Definition

A semigroup S is an **inverse semigroup** if for each s there exists unique s^* such that $s = ss^*s$ and $s^* = s^*ss^*$.

Structure of inverse semigroups:

idempotents: $E = E(S) = \{s : s^2 = s\}$ a commutative subsemigroup.

partial order: $s \le t$ if and only if s = te for some $e \in E$.

minimal group congruence σ : $s\sigma t$ iff se = te for some $e \in E$.

group homomorphic image: $G(S) = S/\sigma$

The Bicyclic Monoid

$$B = \langle t : t^*t = 1 \rangle$$

Every word in t, t^* reduces to $t^i t^{*j}$ (e.g. $t^2 t^* t^4 t^{*3} = t^5 t^{*3}$).

$$B \cong \mathbb{N} \times \mathbb{N}$$
 $(i,j)(m,n) = \begin{cases} (i+m-j,n) & \text{if } m \geq j \\ (i,n+j-m) & \text{otherwise} \end{cases}$

idempotents:
$$E(B) = \{(m, m) : m \in \mathbb{N}\}$$

partial order:
$$(i,j)(m,m) = \begin{cases} (i+m-j,m) & \text{if } m \geq j \\ (i,j) & \text{otherwise} \end{cases}$$

min. group congruence:
$$(i,j)\sigma(m,n)$$
 iff $i-j=m-n$

group image:
$$G(S) = \mathbb{Z}$$

Other Examples

- **1 polycyclic (Cuntz)** $P_n = \langle a_1, \dots a_n : a_i^* a_i = 1, \ a_i^* a_j = 0 \ i \neq j \rangle$
- **2** McAlister $M_n = \langle a_1, \dots a_n : a_i a_j^* = a_i^* a_j = 0 \ i \neq j \rangle$
- **3 graph inv. semigroups** Γ directed graph Γ^* path category

$$S_{\Gamma} = \{(\alpha, \beta) : s(\alpha) = s(\beta)\} \cup \{0\}$$

$$(\alpha, \beta)(\mu, \nu) = \begin{cases} (\alpha \overline{\mu}, \nu) & \beta \overline{\mu} = \mu \\ (\alpha, \nu \overline{\beta}) & \mu \overline{\nu} = \beta \\ 0 & \text{otherwise} \end{cases}$$

tiling semigroups

E-unitary inverse semigroups

Each of the previous examples is E- or 0-E-unitary.

- S is E-unitary if: $e \le s$, $e^2 = e$ implies $s^2 = s$.
- **Theorem:** S is E-unitary iff $S \to G(S)$ is idempotent pure.
- S is 0-E-unitary if: $e \le s$, $e^2 = e \ne 0$ implies $s^2 = s$.
- *S* is *strongly* 0-*E*-unitary iff $\exists S \rightarrow G^0$ that is idempotent pure.

McAlister's P-theorem

If S is E-unitary then the map $s \mapsto (ss^{-1}, \sigma(s))$ from $S \to E \times G$ is injective.

P-theorem (McAlister): If S is E-unitary then G acts partially on E and $S = E \times_{\alpha} G$

Question: What is the correct structure theorem for the C^* -algebras of E-unitary inverse semigroups?

*C**-algebras of inverse semigroups

left regular representation: Define $\Lambda: S \to \mathcal{B}(\ell^2(S))$ by

$$\Lambda(a)\delta_b = \left\{ egin{array}{ll} \delta_{ab} & ext{if } a^*ab = b \\ 0 & ext{otherwise} \end{array} \right.$$

Definition

$$C^*(S) := \overline{\mathbb{C}S}^{\|\cdot\|_{\mathcal{U}}}$$
 where $\|f\|_{\mathcal{U}} := \sup\{\|\pi(f)\|\}$ over all $\pi: S \to \mathcal{B}(\mathcal{H})$.

$$C_r^*(S) := \Lambda(C^*(S))$$

G "acting" on $C^*(E)$

- $C^*(E) = C_0(\widehat{E})$
- ② $\widehat{E} = \{x : E \to \{0,1\} : x(0) = 0\} = \{ \text{ filters } x \subseteq E : 0 \notin x \}$
- **3** Let $D(e) = \{x \in \widehat{E} : x(e) = 1\}$. Then S acts on \widehat{E} by homeomorphisms $\beta_s : D(s^*s) \to D(ss^*)$ where

$$\beta_s(x)(e) = x(s^*es)$$

• For S E-unitary, G acts by $\alpha_g = \bigcup \beta_s$ where $s \in \sigma^{-1}(g)$.

Note: Not an action in the usual sense, so we shouldn't nec. expect a crossed product theorem.

Paterson's groupoid

Paterson defined a groupoid G(S) that is a groupoid of germs for the above action of S.

 $\mathcal{G}(\mathcal{S})$ is the set of equiv. classes of pairs (s,x) $(s \in \mathcal{S}, x \in D(s^*s))$ where $(s,x) \sim (t,y)$ if x=y and $\exists u \leq s, t$ with $x \in D(u^*u)$.

$$[s,x][t,y] = [st,y]$$
 provided $x = \beta_t(y)$

Theorem: (Paterson) $C^*(S) = C^*(\mathcal{G}(S))$ and $C^*_r(S) = C^*_r(\mathcal{G}(S))$.

Khoshkam and Skandalis

Gave conditions on a cocycle $\rho: \mathcal{G} \to G$ so that $C^*(\mathcal{G})$ is Morita equivalent to $C_0(X) \times_{\alpha} G$.

Let $X = G^{(0)}$. The conditions are:

- (faithful) $\gamma \mapsto (r(\gamma), \rho(\gamma), s(\gamma))$ is injective from \mathcal{G} into $X \times G \times X$,
- ② (closed) $\gamma \mapsto (r(\gamma), \rho(\gamma), s(\gamma))$ is closed, and
- $\textbf{ (transverse)} \ (g,\gamma) \mapsto (g\rho(\gamma),s(\gamma)) \ \text{from} \ G \times \mathcal{G} \to G \times X \ \text{is open}.$

Theorem (K. and S.) If $\rho: \mathcal{G} \to G$ satisfies (1) - (3) above, then $C^*(\mathcal{G})$ is Morita equivalent to $C_0(Y) \times_{\alpha} G$ and $C_r^*(\mathcal{G})$ is Morita equivalent to $C_0(Y) \times_{\alpha,r} G$.

Applications to inverse semigroups

K. and S. applied their results to Paterson's groupoid $\mathcal{G}(S)$.

 $\sigma: S \to G$ induces a cocycle $\rho: \mathcal{G}(S) \to G$. The conditions (1)-(3) are satisfied provided

- ② $\sigma: S \to G$ satisfies the **KS condition**: $eS_g f$ is finitely generated as an order ideal.

Cor: (K. and S.) If S is E-unitary and satisfies the KS condition then $C^*(S)$ is Morita equivalent to $C_0(Y) \times_{\alpha} G$ and $C^*_r(S)$ is Morita equivalent to $C_0(Y) \times_{\alpha,r} G$.

The KS condition does not include all inverse semigroups, but it does include a large class called the *F*-inverse semigroups.

Graph inverse semigroups S_{Γ} , for example, are 0-F-inverse.

We would still like a crossed product theorem that applies in the same generality as the P-theorem.

Partial Crossed Products

Partial action α of G on a C*-algebra A:

closed ideals $\{A_g\}_{g\in G}$ of A isomorphisms $\alpha_g:A_{g^{-1}}\to A_g$ such that

- \mathbf{Q} α_{gh} extends $\alpha_{g}\alpha_{h}$

Covariant representation (π, u) of (A, G, α) :

 $\pi: A \to \mathcal{B}(\mathcal{H})$ a rep. of A

 $u: G \to \mathcal{B}(\mathcal{H})$ a partial rep. of G:

- $\mathbf{0}$ u_g is a partial isometry for all g in G
- u_{gh} extends $u_g u_h$

Partial Crossed Products

The **partial crossed product** $A \times_{\alpha} G$ is built from summable $f : G \to A$ and is universal for covariant representations (π, u) of (A, G, α) .

History:

- (Nica, 1992) Studied C*-algebras of quasi-lattice ordered groups G. Such an algebra has a large abelian subalgebra $\mathcal D$ and an expectation $\epsilon:A\to \mathcal D$. Nica remarks that there is a "crossed product-like structure" of $\mathcal D$ by G.
- ② (Exel, 1994) Studied $A \times_{\alpha} \mathbb{Z}$, a crossed product by a single partial automorphism.
- (McClanahan, 1995) Partial crossed products by arbitrary discrete groups.
- (Quigg and Raeburn, 1997) Identified Cuntz algebras and Nica's algebras as partial crossed products.

Isomorphism Theorem

Suppose S is strongly 0-E-unitary with group image G. The partial action of G on E extends to $C^*(E)$

$$C_{g^{-1}} = \overline{\operatorname{span}}\left(\bigcup_{s \in \varphi^{-1}(g)} \operatorname{\mathsf{E}} s^* s\right)$$

For an idempotent x in $C_{g^{-1}}$, $\alpha_g(x):=sxs^*$, where s in S is any element such that $x\leq s^*s$ and $\varphi(s)=g$

Theorem (M., Steinberg) Let S be strongly 0-E-unitary. Then $C^*(S) \cong C^*(E) \times_{\alpha} G$ and $C^*_r(S) \cong C^*(E) \times_{r,\alpha} G$.

$$C^*(S) \cong C^*(E) \times_{\alpha} G$$

• The crossed product is the closed span of $F_s: G \to C^*(E)$ where

$$F_s(g) = \begin{cases} ss^* & \text{if } \sigma(s) = g \\ 0 & \text{otherwise} \end{cases}$$

- $s\mapsto F_s$ extends to a surjection $C^*(S)\to C^*(E) imes_{lpha} G$
- For injectivity, we need to know a representation $\pi: S \to \mathcal{B}(\mathcal{H})$ induces a covariant representation of (π_E, π_G) of $(C^*(E), G, \alpha)$.

Defining (π_E, π_G)

- **Lemma:** If X is a set of compatible partial isometries then there exists a partial isometry $\bigvee_{T \in X} A$ that extends every operator in X.
- If $\sigma(s) = \sigma(t)$ in G then $st^*, s^*t \in E$. Thus $\pi(s), \pi(t)$ are compatible partial isometries.
- $\pi_G(g) := \bigvee_{\sigma(s)=g} \pi(s)$ is a partial representation of G and (π_E, π_G) is a covariant representation.

Limitations of $C^*(S)$

The crossed product theorem applies to all semigroups mentioned so far, including polycyclic (Cuntz), graph inverse, and tiling semigroups. However, in each case $C^*(S) \cong C^*(E) \times_{\alpha} G$ is lacking the Cuntz-Krieger type relations.

To fix this, one must restrict the representations of S considered in some way.

Recall, $C^*(E) = C_0(\widehat{E})$, where

$$\widehat{E} = \{x : E \to \{0,1\} : x(0) = 0\} = \{ \text{ filters } x \subseteq E : 0 \notin x \}$$

Enforcing Cuntz-Krieger Relations

- In order to enforce Cuntz-Krieger type relations on general inverse semigroups, Exel introduced the notion of the tight algebra of *S*.
- ullet Exel defined \widehat{E}_{∞} to be the ultrafilters in \widehat{E} and

$$\widehat{E}_{\mathsf{tight}} = \overline{\widehat{E}_{\infty}}.$$

• Then S acts on $\widehat{E}_{\text{tight}}$ partially and the tight algebra of S is defined as a crossed product of $C_0(\widehat{E}_{\text{tight}})$ by S. (Defined as a groupoid algebra for the groupoid of germs of the action.)

Tight C*-algebra $C^*_{\text{tight}}(S)$

The tight algebra of S gives the correct C^* -algebra in many cases.

$$P_n$$
 \mathcal{O}_n S_{Γ} $C^*(\Gamma)$

tiling Kellendonk's semigroups C*-algebra

Theorem (M., Steinberg) Let S be strongly 0-E-unitary. Then \widehat{E}_{tight} is invariant for the partial action α of G on \widehat{E} and $C^*_{tight}(S) \cong C_0(\widehat{E}_{tight}) \times_{\alpha} G$.

The crossed product result encompasses other results in the literature:

- (Quigg, Raeburn)

 - ② $C^*(G,P) = D \times_{\alpha} G$ (Nica's quasi-lattice ordered group (G,P).
- (Crip, Laca) $C(\partial\Omega) \times G$

Structure of partial crossed products

Having a partial crossed product by a group has some advantages.

Results of Exel, Laca, Quigg (2002):

- If α is topologically free then a representation of $C_0(X) \times_{r,\alpha} G$ is faithful if and only if it is faithful on $C_0(X)$.
- If α is topologically free and minimal then $C_0(X) \times_{r,\alpha} G$ is simple.
- If α is topologically free on closed invariant subsets of X and α has the approximation property then $U \mapsto \langle C_0(U) \rangle$ is a lattice isomorphism between open invariant subset of U and ideals in $C_0(X) \times_{\alpha} G$

Partial dynamical properties for inverse semigroups

Let S be strongly 0-E-unitary and α the partial action of G on $C_0(\widehat{E})$

- ullet If S is combinatorial then lpha is topologically free.
- P_n , S_{Γ} , and one-dimensional tiling semigroups have the approximation property.

Question: Is there a connection between partial crossed products and the results of Khoshkam and Skandalis?

Theorem: (Abadie) Let α be a partial action of G on the locally compact Hausdorff space X. Then $C^*(G \times_{\alpha} X) = C_0(X) \times_{\alpha} G$.

From α , G, and X, Abadie constructs the **enveloping action** $\widehat{\alpha}$ of G on the space $Y = (G \times X)/\sim$.

Theorem: (Abadie) Let $\widehat{\alpha}$ be the enveloping action of α on the space Y. If Y is Hausdorff, then $C_0(X) \times_{\alpha} G$ is Morita equivalent to $C_0(Y) \times_{\widehat{\alpha}} G$.

Moreover, the map $\rho: G \times_{\alpha} X \to G$ is a faithful, transverse cocycle. The results of Abadie imply that ρ is closed if and only if the enveloping space Y is Hausdorff.

To summarize:

- ② If S is strongly 0-E-unitary then G partially acts on \widehat{E} and $\mathcal{G}(S) = \widehat{E} \times_{\alpha} G$.
- **3** If S also satisfies the KS condition, then $C^*(S)$ is Morita equivalent to a full crossed product $C_0(Y) \times_{\alpha} G$.