Extensions of Hilbert Modules over Tensor Algebras

Andrew Koichi Greene

Department of Mathematics
University of Iowa

Spring 2012
Outline of topics

1. Setup
2. Modules
3. Extensions
4. Derivations
5. Results
6. Future Work
7. References
Setup

C^*-correspondences

- A - a unital C^* algebra
- X a C^*-correspondence. Recall that this means X is a certain kind of bimodule over A. Specifically,
 - X is a right Hilbert C^*-module over A.
 - Its left A-action is given by a C^*-homomorphism $\phi : A \to \mathcal{L}(X)$.

Tensor Powers

\[X^{\otimes 2} = X \otimes_A X \] is a \(C^* \)-correspondence satisfying

- \(a \cdot (x \otimes y) := \phi(a)x \otimes y \).
- \((x \otimes y) \cdot b := x \otimes yb \).
- \(xa \otimes y := x \otimes \phi(a)y \).
- \(\langle x_1 \otimes x_2, y_1 \otimes y_2 \rangle := \langle x_2, \phi(\langle x_1, y_1 \rangle)y_2 \rangle \).

Similarly, define \(X^{\otimes 3} \), \(X^{\otimes 4} \), ...
Constructing the Tensor Algebra

Form the Fock space:

\[\mathcal{F}(X) := A \oplus X \oplus X \otimes 2 \oplus X \otimes 3 \oplus \cdots. \]

Define \(\phi_{\infty} : A \to \mathcal{L}(\mathcal{F}(X)) \) by

\[
\phi_{\infty}(a) = \begin{bmatrix}
 a \\
 \phi(a) \\
 \phi_2(a) \\
 \phi_3(a) \\
 \vdots
\end{bmatrix}
\]

where \(\phi_n(a)(x_1 \otimes x_2 \otimes \cdots \otimes x_n) = (\phi(a)x_1) \otimes x_2 \otimes \cdots \otimes x_n. \)
Fock space $= \mathcal{F}(X) := A \oplus X \oplus X \otimes 2 \oplus X \otimes 3 \oplus \cdots$

For each $x \in X$, we define the creation operator $T_x \in \mathcal{L}(\mathcal{F}(X))$ by

$$T_x = \begin{bmatrix} 0 & & & \\ T_x^{(1)} & 0 & & \\ & T_x^{(2)} & 0 & \\ & & T_x^{(3)} & 0 \\ & & & \ldots \ldots \end{bmatrix}$$

where $T_x^{(k)} : X \otimes k \to X \otimes (k+1)$ is

$T_x^{(k)}(x_1 \otimes \cdots \otimes x_k) = x \otimes x_1 \otimes \cdots \otimes x_k$.
Constructing the Tensor Algebra

Definition

The \textit{tensor algebra} of X, denoted $\mathcal{T}_+(X)$, is the norm closed subalgebra of $\mathcal{L}(\mathcal{F}(X))$ generated by $\phi_\infty(A)$ and $\{ T_x | x \in X \}$.
Examples

1. \(A = X = \mathbb{C} \), \(\mathcal{T}_+(X) = A(\mathbb{D}) \) - classical disc algebra

2. \(A = \mathbb{C}, X = \mathbb{C}^d \), \(\mathcal{T}_+(X) = \mathcal{A}_d \) - Popescu’s noncommutative disc algebra

3. Let \(\alpha \) be an automorphism of a unital \(C^* \)-algebra \(A \). Let \(X = \alpha A \) by defining

 1. \(x \cdot a := xa \).
 2. \(\phi(a)x = \alpha(a)x \).
 3. \(\langle x, y \rangle := x^*y \).

 - \(\phi : A \rightarrow \mathcal{L}(A) \) equals \(\alpha \) since \(\mathcal{L}(A) = M(A) = A \).
 - \(\mathcal{F}(X) = l^2(\mathbb{Z}^+; A) \)
 - \(\mathcal{T}_+(X) \) is generated by \(\phi_\infty(A) \) and \(S = T_1 \), a shift.
 - \(\mathcal{T}_+(X) = A \times_\alpha \mathbb{Z}^+ \) is the analytic crossed product of \(A \) by \(\mathbb{Z}^+ \) determined by \(\alpha \).
Definition

1. A Hilbert space H is a (c.b.) Hilbert module over an operator algebra B if the action of B on H is given by a completely bounded homomorphism $\pi : B \to B(H)$.

2. $\varphi : H \to H'$ is a Hilbert module map if it is a B-module map between Hilbert modules that is bounded as a Hilbert space operator.

Note: We will assume $A \subset B$ is a C^*-algebra, although B need not be self-adjoint. Furthermore, the representation $(\pi|_A) : A \to B(H)$ is a C^*-representation.
Extensions

Definition

An extension ξ is a short exact sequence

$$\xi : 0 \rightarrow H \xrightarrow{\varphi} J \xrightarrow{\psi} K \rightarrow 0$$

where H, J, and K are Hilbert modules over an operator algebra B and φ and ψ are Hilbert-module maps.

Note: In particular, the range of φ equals the kernel of ψ. So φ is bounded below and ψ is bounded below on its initial space.
Equivalent of Extensions

Two extensions ξ and ξ' are equivalent if and only if there exist a Hilbert-module map $\theta : J \rightarrow J'$ making the following diagram commute:

$$
\begin{array}{ccccccccc}
\xi : 0 & \longrightarrow & H & \overset{\varphi}{\longrightarrow} & J & \overset{\psi}{\longrightarrow} & K & \longrightarrow & 0 \\
\downarrow & & \downarrow & & \downarrow & & \downarrow & & \\
\xi' : 0 & \longrightarrow & H' & \overset{\varphi'}{\longrightarrow} & J' & \overset{\psi'}{\longrightarrow} & K' & \longrightarrow & 0
\end{array}
$$

The collection (in fact group) of equivalence classes of extensions is denoted $\text{Ext}^1(K, H)$.

Greene, Andrew (University of Iowa) Ext of Hilbert Modules over Tensor Algebras 14 April 2012 11 / 32
Hilbert Space Decomposition

\[\xi : 0 \to H \xrightarrow{\varphi} J \xrightarrow{\psi} K \to 0 \]

As Hilbert spaces, \(J \cong H \oplus K \) (but not necessarily as \(B \)-modules.)
Let $\pi : B \to B(H)$ and $\rho : B \to B(K)$ be the representations of B on H and K, respectively.
The B-module action on $H \oplus K$, is given by

\[
\begin{pmatrix}
\pi(\cdot) & \delta(\cdot) \\
0 & \rho(\cdot)
\end{pmatrix} : B \to B(H \oplus K)
\]

where $\delta : B \to B(K, H)$ is a completely bounded A-derivation

1. $\delta(fg) = \delta(f)\rho(g)k + \pi(f)\delta(g) \quad \forall f, g \in B$
2. $\delta(a) = 0$ for all $a \in A$.

Note: δ is, technically, a $\phi_\infty(A)$-derivation).
If the derivations δ and δ' correspond, respectively, to extensions ξ and ξ', then $\xi \approx \xi'$ if and only if $\delta - \delta'$ is an inner derivation: there exists $L \in B(K, H)$ such that

$$(\delta - \delta')(f) = \pi(f)L - L\rho(f) \forall f \in B.$$

An inner derivation is A-linear iff $\pi(a)L = L\rho(a) \forall a \in A$.
Alternatively, we can describe extensions in terms of cocycles:

Definition

A *cocycle* is a bilinear map \(\sigma : B \times K \to H \) satisfying

\[
\sigma(fg, k) = \pi(f)\sigma(g, k) + \sigma(f, \rho(g)k).
\]

which is completely bounded when \(H \) and \(K \) are given their column Hilbert space structure.

Derivations and cocycles are related via the equation

\[
\sigma(f, k) = \delta(f)k.
\]
Extension Equivalence

\[\xi \approx \xi' \text{ if and only if } \]

\[\sigma(f, k) - \sigma'(f, k) = \pi(f) Lk - L\rho(f)k. \]
Proposition

Suppose H and K are Hilbert modules over B with representations

$\pi : \mathcal{T}_+(\alpha A) \to B(H)$ and $\rho : \mathcal{T}_+(\alpha A) \to B(K)$, respectively. If

$\sigma : \mathcal{T}_+(\alpha A) \times K \to H$ is a cocycle, then

$$\sigma(S^{n+1}, k) = \sum_{j=0}^{n} \pi(S^{n-j}) \sigma(S, \rho(S^j)k)$$

for every $n \geq 0, S \in B, k \in K$.
Induced Representation

- Let $\psi : A \to B(E)$ be a representation and let $\{e_m\}_{m \geq 0}$ be an orthonormal basis for E.
- From now on, we only consider $B = \mathcal{T}_+(\alpha A)$ and $H = \ell^2(\mathbb{Z}^+; A) \otimes_\psi E$.
- $\{\delta_n \otimes e_m\}_{n,m \geq 0}$ is an orthonormal basis for $\ell^2(\mathbb{Z}^+; A) \otimes_\psi E$., where $\delta_n(k) = \delta_{nk} 1_A$.
- $\pi : \mathcal{T}_+(\alpha A) \to B(\ell^2(\mathbb{Z}^+; A) \otimes_\psi E)$ is given by $\pi|_A = \phi_\infty \otimes id_E$ and $\pi(T_1) = U_+ \otimes id_E$.
Cocycles Defined by Vectors

Definition

We say a sequence of vectors in K, $\{k_m\}$ define a cocycle σ if

$$\sigma(S, k) = \sum_m \langle k, k_m \rangle \delta_0 \otimes e_m.$$
Theorem (Carlson & Clark, 1995)

Let K be a Hilbert $A(\mathbb{D})$-module. Then a vector $k_0 \in K$ defines a cocycle $\sigma : A(\mathbb{D}) \times K \to H^2$ if and only if

$$\sum_{n=0}^{\infty} |\langle \rho(S^n)k, k_0 \rangle|^2 < \infty$$

for all $k \in K$.

Note: H^2 is the classical Hardy space and $\sigma(S, k) = \langle k, k_0 \rangle \in H^2$.

Motivation
Boundedness Criterion

Theorem (Greene, 2011)

Let K be a Hilbert $\mathcal{T}_+ (\alpha A)$-module. Then a sequence in $K, \{k_m\}_{m=0}^{\infty}$ defines a cocycle $\sigma : \mathcal{T}_+ (\alpha A) \times K \to \ell^2 (\mathbb{Z}^+; A) \otimes_{\psi} E$ if and only if

1. \[
\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} |\langle \rho (S^n) k, k_m \rangle|^2 < \infty \quad \forall k \in K
\]

2. \[
\pi (\alpha (a)) k_m = \sum_{m'} \langle \psi (a) e_m, e_{m'} \rangle k_{m'}
\]
Corollary

If $N = \dim(E) < \infty$ and $\text{sp}(\rho(S)) \subset \mathbb{D}$, then any $\{k_m\}_{1 \leq m \leq N}$ satisfying (2) defines a cocycle σ.

Proof.

Define the functions $h_m(z) = \langle \sum_n (z\rho(S))^n k, k_m \rangle$. By hypothesis $h_m(z) = \langle (id_K - z\rho(S))^{-1} k, k_m \rangle$ for $|z| < \|\rho(S)\|^{-1}$ and $h_m(z)$ are analytic across the unit circle.
Continuation of proof.

\[
\sum_{m=1}^{N} \sum_{n=0}^{\infty} |\langle z \rho(S^n)k, k_m \rangle|^2 = \| \sum_{n,m} \langle z \rho(S)^n k, k_m \rangle \delta_n \otimes e_m \| \\
\leq \sum_{m} \| \langle (id_K - z \rho(S))^{-1}k, k_m \rangle \| \\
\leq \sum_{m=1}^{N} \| h_m(z) \| \\
< \infty.
\]
Corollary

If $\rho(S) = id_K$, then $\{k_m\}$ defines a cocycle σ only if $k_m = 0$ for every m. It follows that $\text{Ext}(K, \ell^2(\mathbb{Z}^+; A) \otimes \psi E) = 0$.

Proof.

$$\sum_{n,m} |\langle \rho(S^n)k, k_m \rangle|^2 = \sum_{n,m} |\langle k, k_m \rangle|^2 < \infty \iff k_m = 0 \forall m.$$
Characterization of Cocycles

Theorem (Greene, 2011)

Every cocycle σ is equivalent to a cocycle defined by some $\{k_m\}$.

Proof.

1. Let σ be a cocycle.
2. By the Riesz Representation theorem, there exist $K_{n,m} \in K$ with

$$\sigma(S, k) = \sum_{n,m} \langle k, K_{n,m} \rangle \delta_n \otimes e_m.$$
Characterization of Cocycles

Proof.

3 By the product formula,

\[
\sigma(S^{N+1}, k) = \sum_{j=0}^{N} \pi(S^{N-j}) \sigma(S, \rho(S^j)k) = \sum_{j=0}^{N} \pi(S^{N-j}) \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \langle \rho(S^j)k, K_{n,m} \rangle \delta_n \otimes e_m \\
= \sum_{j=0}^{N} \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \langle k, \rho(S)^j K_{n,m} \rangle \delta_{N+n-j} \otimes e_m \\
= \sum_{n=0}^{\infty} \sum_{j=0}^{N} \sum_{m=0}^{\infty} \langle k, \rho(S)^j K_{n,m} \rangle \delta_{N+n-j} \otimes e_m
\]
Characterization of Cocycles

Proof.

4 The coefficient of the $\delta_\nu \otimes e_m$ term of $\sigma(S^{N+1}, k)$ is

$$\begin{cases}
\sum_{j=0}^{N} \langle k, \rho(S)^j K_{\nu+j-N,m} \rangle & \text{for } \nu \geq N \\
\sum_{j=0}^{\nu} \langle k, \rho(S)^{N-\nu+j} K_j, m \rangle & \text{for } \nu < N.
\end{cases}$$

5 Therefore, $\left\{ \langle k, \sum_{j=1}^{N} \rho(S)^j K_{j+p,m} \rangle \right\}_{N=1}^\infty$ is a bounded sequence in N.

6 Letting Lim be a Banach limit on ℓ^∞, we define $k_{p,m} \in K$ by

$$\langle k, k_{p,m} \rangle = \text{Lim}_{N \to \infty} \left\langle k, \sum_{j=0}^{N} \rho(S)^j K_{j+p,m} \right\rangle.$$
Characterization of Cocycles

Proof.

7 Define σ_0 by $\sigma_0(S, k) = \sum_m \langle k, k_{0,m} \rangle \delta_0 \otimes e_m$.
 Note: σ_0 is A-linear iff $\pi(\alpha(a)) k_{0,m} = \sum_p \langle \psi(a)e_m, e_p \rangle k_{0,p}$.

8 Define $L : K \rightarrow \ell^2(\mathbb{Z}^+; A) \otimes \psi E$ by
 $Lk = \sum_{j,m} \langle k, k_{j+1,m} \rangle \delta_j \otimes e_m$.

9 $\sigma(S, k) - \sigma_0(S, k) = (\pi(S)L - L\rho(S))k$.

Ongoing and Future Work

1. Characterize the coboundaries.
2. Calculate $\text{Ext}^1(K, \ell^2(\mathbb{Z}^+; A) \otimes_\psi E)$.
3. Study the more general setting with $\alpha \in \text{End}(A)$.
4. Generalize to $\mathcal{T}_+(X)$.
5. Study projectivity and injectivity in terms of Ext.
References

J. F. Carlson and D. N. Clark
Cohomology and Extensions of Hilbert Modules,

S. Ling and P.S Muhly
An Automorphic Form of Ando’s Theorem,

P. S. Muhly and B. Solel
Tensor Algebras over C^*-Correspondences: Representations, Dilations, and C^*-Envelopes,
The End