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Definition

A directed graph E = (E 0,E 1, r , s) consists of a vertex set E 0, an
edge set E 1, and range and source maps r , s : E 1 → E 0.

Example
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Definition (Cuntz-Krieger algebra)

One can construct a C ∗-algebra, C ∗(E ) with generators {Pv}v∈E0

and {Se}e∈E1 subject to the following relations:

(CK1) The Pv are projections in C ∗(E ).

(CK2) The Se are partial isometries in C ∗(E ).

(CK3) S∗e Se = Ps(e) for all e ∈ E 1; and

(CK4) Pv =
∑

r(e)=v SeS∗e provided the sum is finite and r−1(v) 6= ∅.
The algebra C ∗(E ) is called a Cuntz-Krieger algebra or a graph
C ∗-algebra.

The C ∗-algebra C ∗(E ) encodes the properties of E , however
non-isomorphic graphs can give rise to isomorphic C ∗(E ). Graph
C ∗-algebras are of interest because they are easy to construct and
provide an environment in which to test questions about arbitrary
C ∗-algebras.
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Example

Consider the following directed graph

. ve

The CK relations say that S∗e Se = Pv = SeS∗e . Therefore Pv is the
identity and Se is a unitary operator, hence C ∗(Se) is isomorphic
to the continuous functions on the circle C (T).
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. ve f

The CK relations say that

S∗e Se = Pv = S∗f Sf and Pv = SeS∗e + Sf S∗f .

Notice that Pv is the identity for C ∗(E ). This C ∗-algebra is simple
(i.e. no non-zero ideals) and is called the Cuntz algebra. It is
denoted O2.
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Relationship to dynamical systems

If E = (E 0,E 1, r , s) is a finite graph then the infinite path space

E∞ := {(e1, e2, . . .) | s(ei ) = r(ei+1)}

is a compact subset of (E 1)N with the product topology that is
invariant under the map σ defined by the equation

σ(e1, e2, . . .) := (e2, e3, . . .).

The map σ (restricted to E∞) is called a shift of finite type.
Much of the theory of shifts of finite type has direct analogues in
the structure theory of the associated graph C ∗-algebras.
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Definition

A labeled graph (E ,L) over an alphabet A consists of a directed
graph E together with a labeling map L : E 1 → A.

We assume that L : E 1 → A is surjective, that is L(E 1) = A.

Examples

1 A directed graph may be considered a labeled graph where
A = E 1 and the labeling is the identity map.

2 The graph (E ,L) over the alphabet {0, 1} is an example of a
labeled graph.
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Example

The graph (E ,L) over the alphabet {({0, 1},Z)} is an example of
a labeled graph, where E 0 = {({v ,w},Z)}.
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Definition

Let e, f ∈ E 1 and s(e) = r(f ), then ef is a path of length 2. E 2 is
the collection of all paths of length 2. Let L(e) = a and L(f ) = b,
then ab ∈ L2(E ), where L2(E ) denotes the collection of labels for
paths of length 2. More generally, En is the collection of paths of
length n and Ln(E ) is the collection of labeled paths of length n.
E ∗ = ∪n∈NEn, and L∗(E ) = ∪n∈NLn(E ).

Definition

A vertex v is a sink if it emits no edges, i.e. there does not exist
an edge such that s(e) = v

Definition

For B ⊆ E 0, let LB := {β ∈ A : B ∩ s(β) 6= ∅} denote the labeled
edges whose source intersects B nontrivially.
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C ∗-algebra of labeled graph

Definition

A Cuntz-Krieger (E ,L)-family consists of projections
{pr(β) : β ∈ L∗(E )} and partial isometries {sa : a ∈ A} such that:

(CK1a) pr(β)pr(ω) = 0 if and only if r(β) ∩ r(ω) = ∅

(CK1b) For all β, ω, κ ∈ L∗(E ), if r(β) ∩ r(ω) = r(κ) then
pr(β)pr(ω) = pr(κ) and if r(β) ∪ r(ω) = r(κ) then
pr(β) + pr(ω) − pr(β)pr(ω) = pr(κ).

Remark

Using relations (CK1a) and (CK1b) we may now unambiguously
define pr(β)∩r(ω) = pr(β)pr(ω) and
pr(β)∪r(ω) = pr(β) + pr(ω) − pr(β)pr(ω). If r(β) ∩ r(ω) 6= ∅, then we
write pr(β)pr(ω) = pr(β)∩r(ω), so (CK1) implies that p∅ = 0.
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C ∗-algebra of labeled graph

Definition (continued)

(CK2) If a ∈ A and β ∈ L∗(E ) then pr(β)sa = sapr(βa)

(CK3) If a, b ∈ A then s∗a sa = pr(a) and s∗a sb = 0 unless a = b

(CK4) For β ∈ L∗(E ), if Lr(β) is finite, non-empty, and r(β) contains
no sinks we have

pr(β) =
∑

a∈Lr(β)

sapr(βa)s
∗
a .
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Relationship to dynamical systems

Recall that the theory of shifts of finite type has direct analogues
in the theory of graph C ∗-algebras.
Labeled graph C ∗-algebras are similarly connected to sofic shifts.

Teresa Bates, David Pask, Paulette N. Willis∗ Labeled graphs C∗-algebras with group actions



Build up to main theorem
Gross-Tucker Theorem for Labeled Graphs

Coactions and Translation
Fundamental Domain

Definition

Let (E ,L) and (F ,M) be labeled graphs over alphabets AE and
AF respectively. A labeled graph isomorphism is a triple
φ := (φ0, φ1, φA) where φ0 : E 0 → F 0, φ1 : E 1 → F 1, and
φAE : AE → AF such that

1 φ0, φ1, φAE are bijective

2 For all e ∈ E 1 we have φ0(r(e)) = r(φ1(e)) and
φ0(s(e)) = s(φ1(e));

3 φAE : AE → AF is a map such that M◦ φ1 = φAE ◦ L.

If F = E and AE = AF , then φ is called a labeled graph
automorphism.

Let (E ,L) be a labeled graph over the alphabet A, then the set

Aut(E ,L) := {φ : (E ,L)→ (E ,L) : φ is a labeled graph automorphism}

forms a group under composition.
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Definition (group action)

Let (E ,L) be a labeled graph over the alphabet A and G be a
group. A labeled graph action of G on (E ,L) is a triple
((E ,L),G , α) where α : G → Aut(E ,L) is a group homomorphism.
So for all e ∈ E 1 and g ∈ G we have L(α1

g (e))=αAg (L(e)).

.E
1

.
A

.
A

.E
1

L

αA
g

α1
g

L

We say that the label graph action ((E ,L),G , α) is free if
α0
g (v) = v for all v ∈ E 0 implies g = 1G and if αAg (a) = a for all

a ∈ A then g = 1G .
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Definition (quotient labeled graph)

Let ((E ,L),G , α) be a labeled graph action. For i = 0, 1, x ∈ E i ,
and a ∈ A let

Gx := {αi
g (x) : g ∈ G} Ga = {αAg (a) : g ∈ G}

(E/G )i = {Gx : x ∈ E i} A/G = {Ga : a ∈ A}
L/G : (E/G )1 → A/G be given by (L/G )(Ge) = GL(e)

r(Ge) = Gr(e) s(Ge) = Gs(e)

for Ge ∈ (E/G )1. Then (E/G ,L/G ) is a labeled graph over A/G
which we call the quotient labeled graph.
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Example

Consider the following labeled graph
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where E 0 = {{vi ,wi} : i ∈ Z}, A = {{0i , 1i} : i ∈ Z}, G = Z, α is
left translation. Then the quotient labeled graph is

. v . w1

0

0
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Main Theorem (Bates, Pask, W*)

Let (E ,L) be a labeled graph and let G be a group acting freely
on (E ,L) via α. Then (under a technical hypothesis) G acts on
C ∗(E ,L) via α̃ and

C ∗(E ,L)×α̃,r G ∼= C ∗(E/G ,L/G )⊗K(`2(G )),

i.e. C ∗(E ,L)×α̃,r G is strongly Morita equivalent to
C ∗(E/G ,L/G ).
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Steps

To prove

C ∗(E ,L)×α̃,r G ∼= C ∗(E/G ,L/G )⊗K(`2(G ))

we need two theorems.

The Gross-Tucker theorem for labeled graphs: a free action on
a labeled graph is naturally equivariantly isomorphic to a skew
product action obtained from the quotient labeled graph.

A generalization of a theorem of Kaliszewski, Quigg, and
Raeburn: the C ∗-algebra of a skew product labeled graph is
naturally isomorphic to a co-crossed product of a coaction of
the group on the C ∗-algebra of the labeled graph.
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While we are interested in skew products of quotient graphs, for
now we will define the skew product of a general labeled graph.

Definition

Let (E ,L) be a labeled graph and let c , d : E 1 → G be functions.
The skew product labeled graph (E ×c G ,Ld) over alphabet
A× G is the skew product graph E ×c G defined by:

(E ×c G )0 := E 0 × G (E ×c G )1 := E 1 × G

r(e, g) := (r(e), gc(e)) s(e, g) := (s(e), g)

together with the labeling Ld : E 1 × G → A× G given by

Ld(e, g) := (L(e), gd(e)).
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Example

Consider the labeled graph (E ,L)

. v . w1

0

0

Let G = Z and c , d : E 1 → Z be c(ε) = 1 and d(ε) = 0, for
ε ∈ E 1. Then the skew-product labeled graph (E ×c Z,Ld) is:
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Example

For (x , h) ∈ (E ×c G )i , (a, h) ∈ A× G , g ∈ G , and i = 0, 1 let

τ ig (x , h) = (x , gh) and τAg (a, h) = (a, gh).

The map τ = (τ0, τ1, τA) : G → Aut(E ×c G ,Ld) defined by
g → τg is called the (left) labeled graph translation map.

The left labeled graph translation action is a free action since G
acts freely on itself by left translation.
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Gross-Tucker Theorem for Labeled Graphs

Theorem (Bates, Pask, W*)

Let ((E ,L),G , α) be a free labeled graph action. There are
functions c , d : (E/G )1 → G such that ((E ,L),G , α) is
equivariantly isomorphic to ((E/G ×c G , (L/G )d),G , τ), i.e. the
isomorphism intertwines the actions.

So by this theorem we have

C ∗(E ,L)×α̃,r G ∼= C ∗(E/G ×c G , (L/G )d)×τ̃ ,r G .
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(E/Z,L/Z):=
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Definition

Let (E ,L) be a labeled graph and G be a group. A function
c : E 1 → G is label consistent if whenever e, f ∈ E 1 satisfy
L(e) = L(f ), then c(e) = c(f ).

Example

Consider the labeled graph (E ,L)

. v . w1 e

0
f

0

g

Let G = Z and c , d : E 1 → Z be c(ε) = 1 and d(ε) = 0, ∀ε ∈ E 1.

If c : E 1 → G is label consistent function, it induces a well-defined
function C : A → G such that C (a) = c(e) where L(e) = a.
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Lemma

Let (E ,L) be a labeled graph, G be a discrete group, and
c : E 1 → G be a label consistent function.Then there is a coaction
δ : C ∗(E ,L)→ C ∗(E ,L)⊗ C ∗(G ) such that

δ(sa) = sa ⊗ uC(a) and δ(pr(β)) = pr(β) ⊗ u1G

where {sa, pr(β)} is a Cuntz-Krieger (E ,L)-family and
{ug : g ∈ G} are the generators of C ∗(G ).
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Remark

Recall ((E ×c G ,Ld),G , τ), the left labeled graph translation
action, which is a free action. This induces an action
τ̃ : G → Aut C ∗(E ×c G ,Ld) such that

τ̃h(sa,g ) = sa,hg and τ̃h(pr(β),g ) = pr(β),hg .

Remark

The C ∗-algebra C ∗(E ,L)×δ G carries an action δ̂ of G defined via
the formula δ̂h(bg , x) = (bg , xh−1).
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Theorem (Bates, Pask, W*)

Let (E ,L) be a labeled graph, let G be a discrete group, let
c , d : E 1 → G be label consistent functions, and let δ be the
coaction. Then

C ∗(E ×c G ,Ld) ∼= C ∗(E ,L)×δ G

equivariantly for the action τ̃ and the dual action δ̂.

Remark

C ∗(E ×c G ) ∼= C ∗(E )×δ G was proven by Kaliszewski, Quigg, and
Raeburn, so our result that C ∗(E ×c G ,Ld) ∼= C ∗(E ,L)×δ G is a
labeled graph version of their result.
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Since the isomorphism is equivariant for τ̃ and δ̂ it follows that

C ∗(E ×c G ,Ld)×τ̃ ,r G ∼= C ∗(E ,L)×δ G ×
δ̂,r

G .

By Katayama’s duality theorem we know that

C ∗(E ,L)×δ G ×
δ̂,r

G ∼= C ∗(E ,L)⊗K(`2(G )).

Therefore we have

Theorem

Let (E ,L) be a labeled graph, let G be a discrete group, let
c , d : E 1 → G be label consistent functions, and let τ be the left
labeled translation map. Then

C ∗(E ×c G ,Ld)×τ̃ ,r G ∼= C ∗(E ,L)⊗K(`2(G )).

If the labeled graph is a quotient labeled graph (E/G ,L/G ) then

C ∗(E/G ×c G , (L/G )d)×τ̃ ,r G ∼= C ∗(E/G ,L/G )⊗K(`2(G )).
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The Gross-Tucker theorem for labeled graphs proves

((E ,L),G , α) ∼= ((E/G ×c G , (L/G )d),G , τ)

which gives us C ∗(E ,L)×α̃,r G ∼= C ∗(E/G ×c G , (L/G )d)×τ̃ ,r G .
We have also shown that

C ∗(E/G ×c G , (L/G )d)×τ̃ ,r G ∼= C ∗(E/G ,L/G )⊗K(`2(G )),

therefore we have

C ∗(E ,L)×α̃,r G ∼= C ∗(E/G ,L/G )⊗K(`2(G )).

Remark

Notice that to define the coaction δ we relied on the assumption
that c is label consistent. We need d label consistent to identify
L∗d(E ×c G ) with L∗(E )×G . Since the Gross-Tucker theorem only
gives the existence of functions c and d, we must determine
conditions under which c and d are label consistent.
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Definition

Let ((E ,L),G , α) be a free labeled graph action. A fundamental
domain for ((E ,L),G , α) is a set T ⊆ E 0 such that

1 for every v ∈ E 0 there exists g ∈ G and a unique w ∈ T such
that v = α0

gw,

2 if r(e), r(f ) ∈ T , and GL(e) = GL(f ), then L(e) = L(f ),

3 if s(e), s(f ) ∈ T , and GL(e) = GL(f ), then L(e) = L(f )

for every e, f ∈ E 1.

Proposition

Let ((E ,L),G , α) be a free labeled graph action. Then by
Gross-Tucker for labeled graphs there exists functions
c, d : (E/G )1 → G such that
((E ,L),G , α) ∼= ((E/G ×c G , (L/G )d),G , τ). If ((E ,L),G , α)
admits a fundamental domain, then c and d are label consistent.
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Theorem (Bates, Pask, W*)

Let (E ,L) satisfy the nondegenerate hypothesis and ((E ,L),G , α)
be a free labeled graph action which admits a fundamental
domain. Then

C ∗(E ,L)×α̃,r G ∼= C ∗(E/G ,L/G )⊗K(`2(G )).

Proof.

There are label consistent functions c , d : (E/G )1 → G such that

((E ,L),G , α) ∼= ((E/G ×c G , (L/G )d),G , τ),

so we have C ∗(E ,L)×α̃,r G ∼= C ∗(E/G ×c G , (L/G )d)×τ̃ ,r G .
We have shown that

C ∗(E/G ×c G , (L/G )d)×τ̃ ,r G ∼= C ∗(E/G ,L/G )⊗K(`2(G )).
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