Build up to main theorem Gross-Tucker Theorem for Labeled Graphs Coactions and Translation Fundamental Domain

Labeled graphs C^* -algebras with group actions

Teresa Bates, David Pask, Paulette N. Willis*

University of Iowa

Iowa-Nebraska Functional Analysis Seminar

April 17, 2010

Definition

A directed graph $E = (E^0, E^1, r, s)$ consists of a vertex set E^0 , an edge set E^1 , and range and source maps $r, s : E^1 \to E^0$.

Example

Definition (Cuntz-Krieger algebra)

One can construct a C^* -algebra, $C^*(E)$ with generators $\{P_v\}_{v \in E^0}$ and $\{S_e\}_{e \in E^1}$ subject to the following relations:

- (CK1) The P_v are projections in $C^*(E)$.
- (CK2) The S_e are partial isometries in $C^*(E)$.
- (CK3) $S_e^*S_e = P_{s(e)}$ for all $e \in E^1$; and
- (CK4) $P_v = \sum_{r(e)=v} S_e S_e^*$ provided the sum is finite and $r^{-1}(v) \neq \emptyset$. The algebra $C^*(E)$ is called a Cuntz-Krieger algebra or a graph C^* -algebra.

The C^* -algebra $C^*(E)$ encodes the properties of E, however non-isomorphic graphs can give rise to isomorphic $C^*(E)$. Graph C^* -algebras are of interest because they are easy to construct and provide an environment in which to test questions about arbitrary C^* -algebras.

Consider the following directed graph

The CK relations say that $S_e^*S_e = P_v = S_eS_e^*$. Therefore P_v is the identity and S_e is a unitary operator, hence $C^*(S_e)$ is isomorphic to the continuous functions on the circle $C(\mathbb{T})$.

The CK relations say that

$$S_e^* S_e = P_v = S_f^* S_f$$
 and $P_v = S_e S_e^* + S_f S_f^*$.

Notice that P_{ν} is the identity for $C^*(E)$. This C^* -algebra is simple (i.e. no non-zero ideals) and is called the Cuntz algebra. It is denoted \mathcal{O}_2 .

Relationship to dynamical systems

If $E = (E^0, E^1, r, s)$ is a finite graph then the infinite path space

$$E^{\infty} := \{(e_1, e_2, \ldots) \mid s(e_i) = r(e_{i+1})\}$$

is a compact subset of $(E^1)^{\mathbb{N}}$ with the product topology that is invariant under the map σ defined by the equation

$$\sigma(e_1,e_2,\ldots):=(e_2,e_3,\ldots).$$

The map σ (restricted to E^{∞}) is called a shift of finite type. Much of the theory of shifts of finite type has direct analogues in the structure theory of the associated graph C^* -algebras.

Definition

A labeled graph (E, \mathcal{L}) over an alphabet \mathcal{A} consists of a directed graph E together with a labeling map $\mathcal{L}: E^1 \to \mathcal{A}$.

We assume that $\mathcal{L}: E^1 \to \mathcal{A}$ is surjective, that is $\mathcal{L}(E^1) = \mathcal{A}$.

Examples

- **①** A directed graph may be considered a labeled graph where $\mathcal{A} = E^1$ and the labeling is the identity map.
- ② The graph (E, \mathcal{L}) over the alphabet $\{0, 1\}$ is an example of a labeled graph.

The graph (E, \mathcal{L}) over the alphabet $\{(\{0,1\}, \mathbb{Z})\}$ is an example of a labeled graph, where $E^0 = \{(\{v,w\}, \mathbb{Z})\}$.

Definition

Let $e, f \in E^1$ and s(e) = r(f), then ef is a path of length 2. E^2 is the collection of all paths of length 2. Let $\mathcal{L}(e) = a$ and $\mathcal{L}(f) = b$, then $ab \in \mathcal{L}^2(E)$, where $\mathcal{L}^2(E)$ denotes the collection of labels for paths of length 2. More generally, E^n is the collection of paths of length e and e is the collection of labeled paths of length e. e is the collection of labeled paths of length e. e is the collection of labeled paths of length e.

Definition

A vertex v is a sink if it emits no edges, i.e. there does not exist an edge such that s(e) = v

Definition

For $B \subseteq E^0$, let $L_B := \{\beta \in \mathcal{A} : B \cap s(\beta) \neq \emptyset\}$ denote the labeled edges whose source intersects B nontrivially.

C^* -algebra of labeled graph

Definition

A Cuntz-Krieger
$$(E, \mathcal{L})$$
-family consists of projections $\{p_{r(\beta)}: \beta \in \mathcal{L}^*(E)\}$ and partial isometries $\{s_a: a \in \mathcal{A}\}$ such that:

(CK1a)
$$p_{r(\beta)}p_{r(\omega)} = 0$$
 if and only if $r(\beta) \cap r(\omega) = \emptyset$

(CK1b) For all
$$\beta, \omega, \kappa \in \mathcal{L}^*(E)$$
, if $r(\beta) \cap r(\omega) = r(\kappa)$ then $p_{r(\beta)}p_{r(\omega)} = p_{r(\kappa)}$ and if $r(\beta) \cup r(\omega) = r(\kappa)$ then $p_{r(\beta)} + p_{r(\omega)} - p_{r(\beta)}p_{r(\omega)} = p_{r(\kappa)}$.

Remark

Using relations (CK1a) and (CK1b) we may now unambiguously define $p_{r(\beta)\cap r(\omega)}=p_{r(\beta)}p_{r(\omega)}$ and $p_{r(\beta)\cup r(\omega)}=p_{r(\beta)}+p_{r(\omega)}-p_{r(\beta)}p_{r(\omega)}.$ If $r(\beta)\cap r(\omega)
eq \emptyset$, then we

write $p_{r(\beta)}p_{r(\omega)}=p_{r(\beta)\cap r(\omega)}$, so (CK1) implies that $p_{\emptyset}=0$.

C*-algebra of labeled graph

Definition (continued)

(CK2) If
$$a \in \mathcal{A}$$
 and $\beta \in \mathcal{L}^*(E)$ then $p_{r(\beta)}s_a = s_a p_{r(\beta a)}$

(CK3) If
$$a,b \in \mathcal{A}$$
 then $s_a^* s_a = p_{r(a)}$ and $s_a^* s_b = 0$ unless $a = b$

(CK4) For $\beta \in \mathcal{L}^*(E)$, if $L_{r(\beta)}$ is finite, non-empty, and $r(\beta)$ contains no sinks we have

$$p_{r(\beta)} = \sum_{a \in L_{r(\beta)}} s_a p_{r(\beta a)} s_a^*.$$

Relationship to dynamical systems

Recall that the theory of shifts of finite type has direct analogues in the theory of graph C^* -algebras.

Labeled graph C^* -algebras are similarly connected to sofic shifts.

Definition

Let (E,\mathcal{L}) and (F,\mathcal{M}) be labeled graphs over alphabets \mathcal{A}_E and \mathcal{A}_F respectively. A labeled graph isomorphism is a triple $\phi:=(\phi^0,\phi^1,\phi^\mathcal{A})$ where $\phi^0:E^0\to F^0$, $\phi^1:E^1\to F^1$, and $\phi^{\mathcal{A}_E}:\mathcal{A}_E\to\mathcal{A}_F$ such that

- \bullet $\phi^0, \phi^1, \phi^{A_E}$ are bijective
- ② For all $e \in E^1$ we have $\phi^0(r(e)) = r(\phi^1(e))$ and $\phi^0(s(e)) = s(\phi^1(e))$;

If F = E and $A_E = A_F$, then ϕ is called a labeled graph automorphism.

Let (E, \mathcal{L}) be a labeled graph over the alphabet \mathcal{A} , then the set $\operatorname{Aut}(E, \mathcal{L}) := \{\phi : (E, \mathcal{L}) \to (E, \mathcal{L}) : \phi \text{ is a labeled graph automorphism} \}$ forms a group under composition.

Definition (group action)

Let (E, \mathcal{L}) be a labeled graph over the alphabet \mathcal{A} and G be a group. A labeled graph action of G on (E, \mathcal{L}) is a triple $((E, \mathcal{L}), G, \alpha)$ where $\alpha : G \to \operatorname{Aut}(E, \mathcal{L})$ is a group homomorphism. So for all $e \in E^1$ and $g \in G$ we have $\mathcal{L}(\alpha_g^1(e)) = \alpha_g^{\mathcal{A}}(\mathcal{L}(e))$.

We say that the label graph action $((E, \mathcal{L}), G, \alpha)$ is free if $\alpha_g^0(v) = v$ for all $v \in E^0$ implies $g = 1_G$ and if $\alpha_g^{\mathcal{A}}(a) = a$ for all $a \in \mathcal{A}$ then $g = 1_G$.

Definition (quotient labeled graph)

Let $((E, \mathcal{L}), G, \alpha)$ be a labeled graph action. For $i = 0, 1, x \in E^i$, and $a \in \mathcal{A}$ let

$$Gx := \{ lpha_g^i(x) : g \in G \}$$
 $Ga = \{ lpha_g^{\mathcal{A}}(a) : g \in G \}$ $(E/G)^i = \{ Gx : x \in E^i \}$ $\mathcal{A}/G = \{ Ga : a \in \mathcal{A} \}$ $\mathcal{L}/G : (E/G)^1 \to \mathcal{A}/G$ be given by $(\mathcal{L}/G)(Ge) = G\mathcal{L}(e)$ $r(Ge) = Gr(e)$ $s(Ge) = Gs(e)$

for $Ge \in (E/G)^1$. Then $(E/G, \mathcal{L}/G)$ is a labeled graph over \mathcal{A}/G which we call the quotient labeled graph.

Consider the following labeled graph

where $E^0 = \{\{v_i, w_i\} : i \in \mathbb{Z}\}, A = \{\{0_i, 1_i\} : i \in \mathbb{Z}\}, G = \mathbb{Z}, \alpha$ is left translation. Then the quotient labeled graph is

Main Theorem (Bates, Pask, W*)

Let (E, \mathcal{L}) be a labeled graph and let G be a group acting freely on (E, \mathcal{L}) via α . Then (under a technical hypothesis) G acts on $C^*(E, \mathcal{L})$ via $\widetilde{\alpha}$ and

$$C^*(E,\mathcal{L}) \times_{\widetilde{\alpha},r} G \cong C^*(E/G,\mathcal{L}/G) \otimes \mathcal{K}(\ell^2(G)),$$

i.e. $C^*(E,\mathcal{L}) \times_{\widetilde{\alpha},r} G$ is strongly Morita equivalent to $C^*(E/G,\mathcal{L}/G)$.

Steps

To prove

$$C^*(E,\mathcal{L}) \times_{\widetilde{\alpha},r} G \cong C^*(E/G,\mathcal{L}/G) \otimes \mathcal{K}(\ell^2(G))$$

we need two theorems.

- The Gross-Tucker theorem for labeled graphs: a free action on a labeled graph is naturally equivariantly isomorphic to a skew product action obtained from the quotient labeled graph.
- A generalization of a theorem of Kaliszewski, Quigg, and Raeburn: the C*-algebra of a skew product labeled graph is naturally isomorphic to a co-crossed product of a coaction of the group on the C*-algebra of the labeled graph.

While we are interested in skew products of quotient graphs, for now we will define the skew product of a general labeled graph.

Definition

Let (E, \mathcal{L}) be a labeled graph and let $c, d : E^1 \to G$ be functions. The skew product labeled graph $(E \times_c G, \mathcal{L}_d)$ over alphabet $\mathcal{A} \times G$ is the skew product graph $E \times_c G$ defined by:

$$(E \times_c G)^0 := E^0 \times G$$
 $(E \times_c G)^1 := E^1 \times G$ $r(e,g) := (r(e),gc(e))$ $s(e,g) := (s(e),g)$

together with the labeling $\mathcal{L}_d: E^1 \times G \to \mathcal{A} \times G$ given by

$$\mathcal{L}_d(e,g) := (\mathcal{L}(e), gd(e)).$$

Consider the labeled graph (E, \mathcal{L})

Let $G = \mathbb{Z}$ and $c, d : E^1 \to \mathbb{Z}$ be $c(\varepsilon) = 1$ and $d(\varepsilon) = 0$, for $\varepsilon \in E^1$. Then the skew-product labeled graph $(E \times_c \mathbb{Z}, \mathcal{L}_d)$ is:

For
$$(x,h) \in (E \times_c G)^i$$
, $(a,h) \in \mathcal{A} \times G$, $g \in G$, and $i=0,1$ let
$$\tau_g^i(x,h) = (x,gh) \qquad \text{and} \qquad \tau_g^{\mathcal{A}}(a,h) = (a,gh).$$

The map $\tau = (\tau^0, \tau^1, \tau^A) : G \to \operatorname{Aut}(E \times_c G, \mathcal{L}_d)$ defined by $g \to \tau_g$ is called the (left) labeled graph translation map.

The left labeled graph translation action is a free action since G acts freely on itself by left translation.

Gross-Tucker Theorem for Labeled Graphs

Theorem (Bates, Pask, W*)

Let $((E,\mathcal{L}),G,\alpha)$ be a free labeled graph action. There are functions $c,d:(E/G)^1\to G$ such that $((E,\mathcal{L}),G,\alpha)$ is equivariantly isomorphic to $((E/G\times_c G,(\mathcal{L}/G)_d),G,\tau)$, i.e. the isomorphism intertwines the actions.

So by this theorem we have

$$C^*(E,\mathcal{L}) \times_{\widetilde{\alpha},r} G \cong C^*(E/G \times_c G, (\mathcal{L}/G)_d) \times_{\widetilde{\tau},r} G.$$

$$(E/\mathbb{Z},\mathcal{L}/\mathbb{Z}):=$$
1 v w

Definition

Let (E, \mathcal{L}) be a labeled graph and G be a group. A function $c: E^1 \to G$ is label consistent if whenever $e, f \in E^1$ satisfy $\mathcal{L}(e) = \mathcal{L}(f)$, then c(e) = c(f).

Example

Consider the labeled graph (E, \mathcal{L})

Let $G=\mathbb{Z}$ and $c,d:E^1\to\mathbb{Z}$ be $c(\varepsilon)=1$ and $d(\varepsilon)=0$, $\forall \varepsilon\in E^1$.

If $c: E^1 \to G$ is label consistent function, it induces a well-defined function $C: A \to G$ such that C(a) = c(e) where $\mathcal{L}(e) = a$.

Lemma

Let (E, \mathcal{L}) be a labeled graph, G be a discrete group, and $c: E^1 \to G$ be a label consistent function. Then there is a coaction $\delta: C^*(E, \mathcal{L}) \to C^*(E, \mathcal{L}) \otimes C^*(G)$ such that

$$\delta(s_a) = s_a \otimes u_{C(a)}$$
 and $\delta(p_{r(\beta)}) = p_{r(\beta)} \otimes u_{1_G}$

where $\{s_a, p_{r(\beta)}\}$ is a Cuntz-Krieger (E, \mathcal{L}) -family and $\{u_g : g \in G\}$ are the generators of $C^*(G)$.

Remark

Recall $((E \times_c G, \mathcal{L}_d), G, \tau)$, the left labeled graph translation action, which is a free action. This induces an action $\widetilde{\tau}: G \to \operatorname{Aut} C^*(E \times_c G, \mathcal{L}_d)$ such that

$$\widetilde{ au}_h(s_{\mathsf{a},g}) = s_{\mathsf{a},hg}$$
 and $\widetilde{ au}_h(p_{r(eta),g}) = p_{r(eta),hg}.$

Remark

The C*-algebra $C^*(E,\mathcal{L}) \times_{\delta} G$ carries an action $\widehat{\delta}$ of G defined via the formula $\widehat{\delta}_h(b_g,x) = (b_g,xh^{-1})$.

Theorem (Bates, Pask, W*)

Let (E, \mathcal{L}) be a labeled graph, let G be a discrete group, let $c, d: E^1 \to G$ be label consistent functions, and let δ be the coaction. Then

$$C^*(E \times_c G, \mathcal{L}_d) \cong C^*(E, \mathcal{L}) \times_{\delta} G$$

equivariantly for the action $\widetilde{\tau}$ and the dual action $\widehat{\delta}$.

Remark

 $C^*(E \times_c G) \cong C^*(E) \times_{\delta} G$ was proven by Kaliszewski, Quigg, and Raeburn, so our result that $C^*(E \times_c G, \mathcal{L}_d) \cong C^*(E, \mathcal{L}) \times_{\delta} G$ is a labeled graph version of their result.

Since the isomorphism is equivariant for $\widetilde{\tau}$ and $\widehat{\delta}$ it follows that

$$C^*(E \times_c G, \mathcal{L}_d) \times_{\widetilde{\tau},r} G \cong C^*(E,\mathcal{L}) \times_{\delta} G \times_{\widehat{\delta},r} G.$$

By Katayama's duality theorem we know that

$$C^*(E,\mathcal{L}) \times_{\delta} G \times_{\widehat{\delta},r} G \cong C^*(E,\mathcal{L}) \otimes \mathcal{K}(\ell^2(G)).$$

Therefore we have

Theorem

Let (E,\mathcal{L}) be a labeled graph, let G be a discrete group, let $c,d:E^1\to G$ be label consistent functions, and let τ be the left labeled translation map. Then

$$C^*(E \times_c G, \mathcal{L}_d) \times_{\widetilde{\tau},r} G \cong C^*(E,\mathcal{L}) \otimes \mathcal{K}(\ell^2(G)).$$

If the labeled graph is a quotient labeled graph $(E/G, \mathcal{L}/G)$ then

$$C^*(E/G \times_c G, (\mathcal{L}/G)_d) \times_{\widetilde{r},r} G \cong C^*(E/G, \mathcal{L}/G) \otimes \mathcal{K}(\ell^2(G)).$$

The Gross-Tucker theorem for labeled graphs proves

$$((E,\mathcal{L}),G,\alpha)\cong((E/G\times_{c}G,(\mathcal{L}/G)_{d}),G,\tau)$$

which gives us $C^*(E,\mathcal{L}) \times_{\widetilde{\alpha},r} G \cong C^*(E/G \times_c G, (\mathcal{L}/G)_d) \times_{\widetilde{\tau},r} G$. We have also shown that

$$C^*(E/G \times_c G, (\mathcal{L}/G)_d) \times_{\widetilde{\tau},r} G \cong C^*(E/G, \mathcal{L}/G) \otimes \mathcal{K}(\ell^2(G)),$$

therefore we have

$$C^*(E,\mathcal{L}) \times_{\widetilde{\alpha},r} G \cong C^*(E/G,\mathcal{L}/G) \otimes \mathcal{K}(\ell^2(G)).$$

Remark

Notice that to define the coaction δ we relied on the assumption that c is label consistent. We need d label consistent to identify $\mathcal{L}_d^*(E \times_c G)$ with $\mathcal{L}^*(E) \times G$. Since the Gross-Tucker theorem only gives the existence of functions c and d, we must determine conditions under which c and d are label consistent.

Definition

Let $((E, \mathcal{L}), G, \alpha)$ be a free labeled graph action. A fundamental domain for $((E, \mathcal{L}), G, \alpha)$ is a set $T \subseteq E^0$ such that

- for every $v \in E^0$ there exists $g \in G$ and a unique $w \in T$ such that $v = \alpha_g^0 w$,
- ② if $r(e), r(f) \in T$, and GL(e) = GL(f), then L(e) = L(f),

Proposition

Let $((E,\mathcal{L}),G,\alpha)$ be a free labeled graph action. Then by Gross-Tucker for labeled graphs there exists functions $c,d:(E/G)^1\to G$ such that $((E,\mathcal{L}),G,\alpha)\cong ((E/G\times_c G,(\mathcal{L}/G)_d),G,\tau)$. If $((E,\mathcal{L}),G,\alpha)$ admits a fundamental domain, then c and d are label consistent.

Theorem (Bates, Pask, Wst)

Let (E, \mathcal{L}) satisfy the nondegenerate hypothesis and $((E, \mathcal{L}), G, \alpha)$ be a free labeled graph action which admits a fundamental domain. Then

$$C^*(E,\mathcal{L}) \times_{\widetilde{\alpha},r} G \cong C^*(E/G,\mathcal{L}/G) \otimes \mathcal{K}(\ell^2(G)).$$

Proof.

There are label consistent functions $c,d:(E/G)^1\to G$ such that

$$((E,\mathcal{L}),G,\alpha)\cong((E/G\times_c G,(\mathcal{L}/G)_d),G,\tau),$$

so we have $C^*(E,\mathcal{L}) \times_{\widetilde{\alpha},r} G \cong C^*(E/G \times_c G, (\mathcal{L}/G)_d) \times_{\widetilde{\tau},r} G$. We have shown that

$$C^*(E/G \times_c G, (\mathcal{L}/G)_d) \times_{\widetilde{r},r} G \cong C^*(E/G, \mathcal{L}/G) \otimes \mathcal{K}(\ell^2(G)).$$