Completely Positive Maps in Quantum Information

Yiu Tung Poon
Department of Mathematics
Iowa State University
Ames, Iowa, USA

INFAS November 14, 2009

Joint work with Chi-Kwong Li.

This research was partially supported by an NSF grant.

 $\mathcal{H},\ \mathcal{K}:$ Hilbert space.

 $\mathcal{H},\ \mathcal{K}:$ Hilbert space.

 $\mathcal{B}(\mathcal{H})\ (\mathcal{B}(\mathcal{H},\mathcal{K})): \mbox{Bounded Linear operators on } \mathcal{H}\ \mbox{(from } \mathcal{H}\ \mbox{to } \mathcal{K}).$

 $\mathcal{H},\ \mathcal{K}:$ Hilbert space.

 $\mathcal{B}(\mathcal{H})$ $(\mathcal{B}(\mathcal{H},\mathcal{K}))$: Bounded Linear operators on \mathcal{H} (from \mathcal{H} to \mathcal{K}).

When $\dim \mathcal{H} = n$, take $\mathcal{H} = \mathbb{C}^n$, and $\mathcal{B}(\mathcal{H}) = M_n$,

 $\mathcal{H},\ \mathcal{K}:$ Hilbert space.

 $\mathcal{B}(\mathcal{H})$ $(\mathcal{B}(\mathcal{H},\mathcal{K}))$: Bounded Linear operators on \mathcal{H} (from \mathcal{H} to \mathcal{K}).

When $\dim \mathcal{H} = n$, take $\mathcal{H} = \mathbb{C}^n$, and $\mathcal{B}(\mathcal{H}) = M_n$, the set of $n \times n$ complex matrices.

 $\mathcal{H},\ \mathcal{K}:$ Hilbert space.

 $\mathcal{B}(\mathcal{H})$ $(\mathcal{B}(\mathcal{H},\mathcal{K}))$: Bounded Linear operators on \mathcal{H} (from \mathcal{H} to \mathcal{K}).

When $\dim \mathcal{H} = n$, take $\mathcal{H} = \mathbb{C}^n$, and $\mathcal{B}(\mathcal{H}) = M_n$, the set of $n \times n$ complex matrices. Similarly, take $(\mathcal{B}(\mathcal{H}, \mathcal{K})) = M_{m, n}$ when $\dim \mathcal{K} = m$.

 $\mathcal{H},\ \mathcal{K}:$ Hilbert space.

 $\mathcal{B}(\mathcal{H})$ $(\mathcal{B}(\mathcal{H},\mathcal{K}))$: Bounded Linear operators on \mathcal{H} (from \mathcal{H} to \mathcal{K}).

When $\dim \mathcal{H}=n$, take $\mathcal{H}=\mathbb{C}^n$, and $\mathcal{B}(\mathcal{H})=M_n$, the set of $n\times n$ complex matrices. Similarly, take $(\mathcal{B}(\mathcal{H},\mathcal{K}))=M_{m,\ n}$ when $\dim \mathcal{K}=m$.

 $\mathcal{B}(\mathcal{H})_+$: Positive semi-definite operators in $\mathcal{B}(\mathcal{H}).$ For $A\in\mathcal{B}(\mathcal{H})_+$, write $A\geq 0.$

 $\mathcal{H},\ \mathcal{K}:$ Hilbert space.

 $\mathcal{B}(\mathcal{H})$ $(\mathcal{B}(\mathcal{H},\mathcal{K}))$: Bounded Linear operators on \mathcal{H} (from \mathcal{H} to \mathcal{K}).

When $\dim \mathcal{H} = n$, take $\mathcal{H} = \mathbb{C}^n$, and $\mathcal{B}(\mathcal{H}) = M_n$, the set of $n \times n$ complex matrices. Similarly, take $(\mathcal{B}(\mathcal{H}, \mathcal{K})) = M_{m, n}$ when $\dim \mathcal{K} = m$.

 $\mathcal{B}(\mathcal{H})_+$: Positive semi-definite operators in $\mathcal{B}(\mathcal{H})$. For $A\in\mathcal{B}(\mathcal{H})_+$, write $A\geq 0$.

A C*-algebra is a normed closed *-subalgebra of some $\mathcal{B}(\mathcal{H})$.

 $\mathcal{H},\ \mathcal{K}:$ Hilbert space.

 $\mathcal{B}(\mathcal{H})\ (\mathcal{B}(\mathcal{H},\mathcal{K})): \mbox{Bounded Linear operators on } \mathcal{H}\ (\mbox{from } \mathcal{H}\ \mbox{to } \mathcal{K}).$

When $\dim \mathcal{H}=n$, take $\mathcal{H}=\mathbb{C}^n$, and $\mathcal{B}(\mathcal{H})=M_n$, the set of $n\times n$ complex matrices. Similarly, take $(\mathcal{B}(\mathcal{H},\mathcal{K}))=M_{m,\ n}$ when $\dim \mathcal{K}=m$.

 $\mathcal{B}(\mathcal{H})_+$: Positive semi-definite operators in $\mathcal{B}(\mathcal{H}).$ For $A\in\mathcal{B}(\mathcal{H})_+$, write $A\geq 0.$

A C*-algebra is a normed closed *-subalgebra of some $\mathcal{B}(\mathcal{H})$.

A linear map $\Phi:\mathcal{A}\to\mathcal{B}(\mathcal{K})$ is said to be positive if $\Phi(A)\geq 0$ for every $A\geq 0$. $(\Phi\geq 0)$

• Let $\mathcal A$ be a C*-algebra. Suppose we have a linear map $\Phi:\mathcal A\to\mathcal B(\mathcal H).$

• Let \mathcal{A} be a C*-algebra. Suppose we have a linear map $\Phi: \mathcal{A} \to \mathcal{B}(\mathcal{H})$. Then for every $k \geq 1$,

• Let \mathcal{A} be a C*-algebra. Suppose we have a linear map $\Phi: \mathcal{A} \to \mathcal{B}(\mathcal{H})$. Then for every $k \geq 1$, we have $\Phi_k: M_k(\mathcal{A}) \to M_k(\mathcal{B}(\mathcal{H})) = \mathcal{B}(\mathcal{H}^k)$ such that $\Phi_k([a_{ij}]) = [\Phi(a_{ij})]$.

- Let \mathcal{A} be a C*-algebra. Suppose we have a linear map $\Phi: \mathcal{A} \to \mathcal{B}(\mathcal{H})$. Then for every $k \geq 1$, we have $\Phi_k: M_k(\mathcal{A}) \to M_k(\mathcal{B}(\mathcal{H})) = \mathcal{B}(\mathcal{H}^k)$ such that $\Phi_k([a_{ij}]) = [\Phi(a_{ij})]$.
- \bullet Φ is completely positive (CP)

- Let \mathcal{A} be a C*-algebra. Suppose we have a linear map $\Phi: \mathcal{A} \to \mathcal{B}(\mathcal{H})$. Then for every $k \geq 1$, we have $\Phi_k: M_k(\mathcal{A}) \to M_k(\mathcal{B}(\mathcal{H})) = \mathcal{B}(\mathcal{H}^k)$ such that $\Phi_k([a_{ij}]) = [\Phi(a_{ij})]$.
- Φ is completely positive (CP) if $\Phi_k \geq 0$ for all $k \geq 1$.

- Let \mathcal{A} be a C*-algebra. Suppose we have a linear map $\Phi: \mathcal{A} \to \mathcal{B}(\mathcal{H})$. Then for every $k \geq 1$, we have $\Phi_k: M_k(\mathcal{A}) \to M_k(\mathcal{B}(\mathcal{H})) = \mathcal{B}(\mathcal{H}^k)$ such that $\Phi_k([a_{ij}]) = [\Phi(a_{ij})]$.
- Φ is completely positive (CP) if $\Phi_k \geq 0$ for all $k \geq 1$.
- Define $\Phi: M_2 \to M_2$ by $\Phi(A) = A^t$. Then $\Phi_1 \geq 0$ but $\Phi_2 \not\geq 0$

- Let \mathcal{A} be a C*-algebra. Suppose we have a linear map $\Phi: \mathcal{A} \to \mathcal{B}(\mathcal{H})$. Then for every $k \geq 1$, we have $\Phi_k: M_k(\mathcal{A}) \to M_k(\mathcal{B}(\mathcal{H})) = \mathcal{B}(\mathcal{H}^k)$ such that $\Phi_k([a_{ij}]) = [\Phi\left(a_{ij}\right)]$.
- Φ is completely positive (CP) if $\Phi_k \geq 0$ for all $k \geq 1$.
- Define $\Phi: M_2 \to M_2$ by $\Phi(A) = A^t$. Then $\Phi_1 \geq 0$ but $\Phi_2 \not\geq 0$

•

$$\Phi_{2}\left(\left[\begin{array}{ccc|c} 1 & 0 \\ 0 & 0 \end{array}\right] \quad \left[\begin{array}{ccc|c} 0 & 1 \\ 0 & 0 \end{array}\right] \\ \left[\begin{array}{ccc|c} 0 & 0 \\ 1 & 0 \end{array}\right] \quad \left[\begin{array}{ccc|c} 0 & 0 \\ 0 & 1 \end{array}\right] \end{array}\right) = \left[\begin{array}{ccc|c} 1 & 0 \\ 0 & 0 \end{array}\right] \quad \left[\begin{array}{ccc|c} 0 & 0 \\ 1 & 0 \end{array}\right] \\ \left[\begin{array}{ccc|c} 0 & 1 \\ 0 & 0 \end{array}\right] \quad \left[\begin{array}{ccc|c} 0 & 0 \\ 0 & 1 \end{array}\right]$$

Stinespring's Theorem 1955

Let $\mathcal A$ be a C*-algebra with a unit, let $\mathcal H$ be a Hilbert space, and let Φ be a linear function from $\mathcal A$ to $\mathcal B(\mathcal H)$. Then a necessary and sufficient condition for Φ to be completely positive is that Φ have the form

$$\Phi(A) = V^*\pi(A)V$$

for all $A \in \mathcal{A}$, where $V \in \mathcal{B}(\mathcal{H}, \mathcal{K})$; and π is a *-representation of \mathcal{A} into $\mathcal{B}(\mathcal{K})$.

Stinespring's Theorem 1955

Let $\mathcal A$ be a C*-algebra with a unit, let $\mathcal H$ be a Hilbert space, and let Φ be a linear function from $\mathcal A$ to $\mathcal B(\mathcal H)$. Then a necessary and sufficient condition for Φ to be completely positive is that Φ have the form

$$\Phi(A) = V^*\pi(A)V$$

for all $A \in \mathcal{A}$, where $V \in \mathcal{B}(\mathcal{H}, \mathcal{K})$; and π is a *-representation of \mathcal{A} into $\mathcal{B}(\mathcal{K})$.

We may assume that $\pi(I) = I_{\mathcal{K}}$.

Stinespring's Theorem 1955

Let $\mathcal A$ be a C*-algebra with a unit, let $\mathcal H$ be a Hilbert space, and let Φ be a linear function from $\mathcal A$ to $\mathcal B(\mathcal H)$. Then a necessary and sufficient condition for Φ to be completely positive is that Φ have the form

$$\Phi(A) = V^*\pi(A)V$$

for all $A \in \mathcal{A}$, where $V \in \mathcal{B}(\mathcal{H}, \mathcal{K})$; and π is a *-representation of \mathcal{A} into $\mathcal{B}(\mathcal{K})$.

We may assume that $\pi(I)=I_{\mathcal{K}}.$ Φ is unital if and only if V is an isometry,

Stinespring's Theorem 1955

Let $\mathcal A$ be a C*-algebra with a unit, let $\mathcal H$ be a Hilbert space, and let Φ be a linear function from $\mathcal A$ to $\mathcal B(\mathcal H)$. Then a necessary and sufficient condition for Φ to be completely positive is that Φ have the form

$$\Phi(A) = V^*\pi(A)V$$

for all $A \in \mathcal{A}$, where $V \in \mathcal{B}(\mathcal{H}, \mathcal{K})$; and π is a *-representation of \mathcal{A} into $\mathcal{B}(\mathcal{K})$.

We may assume that $\pi(I)=I_{\mathcal{K}}.$ Φ is unital if and only if V is an isometry, i.e. $V^*V=I_{\mathcal{H}}.$

Stinespring's Theorem 1955

Let $\mathcal A$ be a C*-algebra with a unit, let $\mathcal H$ be a Hilbert space, and let Φ be a linear function from $\mathcal A$ to $\mathcal B(\mathcal H)$. Then a necessary and sufficient condition for Φ to be completely positive is that Φ have the form

$$\Phi(A) = V^*\pi(A)V$$

for all $A \in \mathcal{A}$, where $V \in \mathcal{B}(\mathcal{H}, \mathcal{K})$; and π is a *-representation of \mathcal{A} into $\mathcal{B}(\mathcal{K})$.

We may assume that $\pi(I)=I_{\mathcal{K}}$. Φ is unital if and only if V is an isometry, i.e. $V^*V=I_{\mathcal{H}}$. In this case, we say that $\Phi(A)$ is a compression of $\pi(A)$,

Stinespring's Theorem 1955

Let $\mathcal A$ be a C*-algebra with a unit, let $\mathcal H$ be a Hilbert space, and let Φ be a linear function from $\mathcal A$ to $\mathcal B(\mathcal H)$. Then a necessary and sufficient condition for Φ to be completely positive is that Φ have the form

$$\Phi(A) = V^* \pi(A) V$$

for all $A \in \mathcal{A}$, where $V \in \mathcal{B}(\mathcal{H}, \mathcal{K})$; and π is a *-representation of \mathcal{A} into $\mathcal{B}(\mathcal{K})$.

We may assume that $\pi(I)=I_{\mathcal{K}}$. Φ is unital if and only if V is an isometry, i.e. $V^*V=I_{\mathcal{H}}$. In this case, we say that $\Phi(A)$ is a compression of $\pi(A)$, or $\pi(A)$ is a dilation of $\Phi(A)$.

Choi's Theorem 1975

Let $\Phi:M_n\to M_m$. Then Φ is completely positive if and only if Φ is of the form

$$\Phi(A) = \sum_{j=1}^{r} F_j^* A F_j, \tag{1}$$

Choi's Theorem 1975

Let $\Phi:M_n\to M_m$. Then Φ is completely positive if and only if Φ is of the form

$$\Phi(A) = \sum_{j=1}^{r} F_j^* A F_j, \tag{1}$$

where $F_1, \ldots, F_r \in M_{n, m}$.

 $\bullet \ \Phi$ is unital if and only if $\sum_{j=1}^r F_j^* F_j = I_m.$

Choi's Theorem 1975

Let $\Phi:M_n\to M_m$. Then Φ is completely positive if and only if Φ is of the form

$$\Phi(A) = \sum_{j=1}^{r} F_j^* A F_j, \tag{1}$$

- Φ is unital if and only if $\sum_{j=1}^r F_j^* F_j = I_m$.
- In quantum information, quantum channels are trace preserving completely positive maps,

Choi's Theorem 1975

Let $\Phi:M_n\to M_m$. Then Φ is completely positive if and only if Φ is of the form

$$\Phi(A) = \sum_{j=1}^{r} F_j^* A F_j, \tag{1}$$

- Φ is unital if and only if $\sum_{j=1}^r F_j^* F_j = I_m$.
- In quantum information, quantum channels are trace preserving completely positive maps, i.e. $tr \Phi(A) = tr A$.

Choi's Theorem 1975

Let $\Phi:M_n\to M_m$. Then Φ is completely positive if and only if Φ is of the form

$$\Phi(A) = \sum_{j=1}^{r} F_j^* A F_j, \tag{1}$$

- Φ is unital if and only if $\sum_{j=1}^r F_j^* F_j = I_m$.
- In quantum information, quantum channels are trace preserving completely positive maps, i.e. $tr \Phi(A) = tr A$. $tr (a_{ij}) = \sum_i a_{ii}$.

Choi's Theorem 1975

Let $\Phi:M_n\to M_m.$ Then Φ is completely positive if and only if Φ is of the form

$$\Phi(A) = \sum_{j=1}^{r} F_j^* A F_j, \tag{1}$$

- Φ is unital if and only if $\sum_{j=1}^r F_j^* F_j = I_m$.
- In quantum information, quantum channels are trace preserving completely positive maps, i.e. $tr \Phi(A) = tr A$. $tr (a_{ij}) = \sum_i a_{ii}$.
- Φ is trace preserving if and only if $\sum_{j=1}^r F_j F_j^* = I_n$.

Choi's Theorem 1975

Let $\Phi:M_n\to M_m.$ Then Φ is completely positive if and only if Φ is of the form

$$\Phi(A) = \sum_{j=1}^{r} F_j^* A F_j, \tag{1}$$

- Φ is unital if and only if $\sum_{j=1}^r F_j^* F_j = I_m$.
- In quantum information, quantum channels are trace preserving completely positive maps, i.e. $tr \Phi(A) = tr A$. $tr (a_{ij}) = \sum_i a_{ii}$.
- Φ is trace preserving if and only if $\sum_{j=1}^r F_j F_j^* = I_n$.
- Φ is said to have Choi's rank $\leq r$ if it can be represented in (1).

Choi's Theorem 1975

Let $\Phi:M_n\to M_m.$ Then Φ is completely positive if and only if Φ is of the form

$$\Phi(A) = \sum_{j=1}^{r} F_j^* A F_j, \tag{1}$$

- Φ is unital if and only if $\sum_{j=1}^r F_j^* F_j = I_m$.
- In quantum information, quantum channels are trace preserving completely positive maps, i.e. $tr \Phi(A) = tr A$. $tr (a_{ij}) = \sum_i a_{ii}$.
- Φ is trace preserving if and only if $\sum_{j=1}^r F_j F_j^* = I_n$.
- Φ is said to have Choi's rank $\leq r$ if it can be represented in (1). r can be interpreted as the dimension of the external environment E

Choi's Theorem 1975

Let $\Phi:M_n\to M_m.$ Then Φ is completely positive if and only if Φ is of the form

$$\Phi(A) = \sum_{j=1}^{r} F_j^* A F_j, \tag{1}$$

- Φ is unital if and only if $\sum_{j=1}^r F_j^* F_j = I_m$.
- In quantum information, quantum channels are trace preserving completely positive maps, i.e. $tr \Phi(A) = tr A$. $tr (a_{ij}) = \sum_i a_{ii}$.
- Φ is trace preserving if and only if $\sum_{j=1}^r F_j F_j^* = I_n$.
- Φ is said to have Choi's rank $\leq r$ if it can be represented in (1). r can be interpreted as the dimension of the external environment E required to couple with the principal system

Choi's Theorem 1975

Let $\Phi:M_n\to M_m$. Then Φ is completely positive if and only if Φ is of the form

$$\Phi(A) = \sum_{j=1}^{r} F_j^* A F_j, \tag{1}$$

- Φ is unital if and only if $\sum_{j=1}^r F_j^* F_j = I_m$.
- In quantum information, quantum channels are trace preserving completely positive maps, i.e. $tr \Phi(A) = tr A$. $tr (a_{ij}) = \sum_i a_{ii}$.
- Φ is trace preserving if and only if $\sum_{j=1}^r F_j F_j^* = I_n$.
- Φ is said to have Choi's rank $\leq r$ if it can be represented in (1). r can be interpreted as the dimension of the external environment E required to couple with the principal system so that the CP map can be evaluated from the composite system.

• $\langle A, B \rangle = \operatorname{tr} AB^*$ defines an inner product on $M_{n, m}$.

• $\langle A,B\rangle=\mathrm{t} r\,AB^*$ defines an inner product on $M_{n,\,m}.$ Suppose $\Phi:M_n\to M_m$ is linear.

• $\langle A,B \rangle = \operatorname{tr} AB^*$ defines an inner product on $M_{n,\,m}$. Suppose $\Phi: M_n \to M_m$ is linear. Then the dual map $\Phi^*: M_m \to M_n$ is defined by $\langle \Phi(A),B \rangle = \langle A,\Phi^*(B) \rangle$ for all $A \in M_n,\ B \in M_m$.

- $\langle A,B \rangle = \operatorname{tr} AB^*$ defines an inner product on $M_{n,\,m}$. Suppose $\Phi: M_n \to M_m$ is linear. Then the dual map $\Phi^*: M_m \to M_n$ is defined by $\langle \Phi(A),B \rangle = \langle A,\Phi^*(B) \rangle$ for all $A \in M_n,\ B \in M_m$.
- If

$$\Phi(A) = \sum_{j=1}^{r} F_j^* A F_j,$$

Duality

- $\langle A,B \rangle = \operatorname{tr} AB^*$ defines an inner product on $M_{n,\,m}$. Suppose $\Phi: M_n \to M_m$ is linear. Then the dual map $\Phi^*: M_m \to M_n$ is defined by $\langle \Phi(A),B \rangle = \langle A,\Phi^*(B) \rangle$ for all $A \in M_n,\ B \in M_m$.
- If

$$\Phi(A) = \sum_{j=1}^{r} F_j^* A F_j,$$

then

$$\Phi^*(B) = \sum_{j=1}^r F_j B F_j^*.$$

Duality

- $\langle A,B \rangle = \operatorname{tr} AB^*$ defines an inner product on $M_{n,\,m}$. Suppose $\Phi: M_n \to M_m$ is linear. Then the dual map $\Phi^*: M_m \to M_n$ is defined by $\langle \Phi(A),B \rangle = \langle A,\Phi^*(B) \rangle$ for all $A \in M_n,\ B \in M_m$.
- If

$$\Phi(A) = \sum_{j=1}^{r} F_j^* A F_j,$$

then

$$\Phi^*(B) = \sum_{j=1}^r F_j B F_j^*.$$

• A completely positive map $\Phi: M_n \to M_m$ is unital if and only if Φ^* is trace preserving.

Duality

- $\langle A,B \rangle = \operatorname{tr} AB^*$ defines an inner product on $M_{n,\,m}$. Suppose $\Phi: M_n \to M_m$ is linear. Then the dual map $\Phi^*: M_m \to M_n$ is defined by $\langle \Phi(A),B \rangle = \langle A,\Phi^*(B) \rangle$ for all $A \in M_n,\ B \in M_m$.
- If

$$\Phi(A) = \sum_{j=1}^{r} F_j^* A F_j,$$

then

$$\Phi^*(B) = \sum_{j=1}^r F_j B F_j^*.$$

- A completely positive map $\Phi: M_n \to M_m$ is unital if and only if Φ^* is trace preserving.
- Can we use this duality to deduce results in trace preserving completely positive maps from those in unital completely positive maps and vice versa?

① Given $A \in M_n$ and $B \in M_m$, when is there a completely positive map $\Phi(A) = B$?

- ① Given $A \in M_n$ and $B \in M_m$, when is there a completely positive map $\Phi(A) = B$?
- **②** What about $\Phi(A_i) = B_i$ for $A_1, \ldots, A_k \in M_n$ and $B_1, \ldots, B_k \in M_m$?

- ① Given $A \in M_n$ and $B \in M_m$, when is there a completely positive map $\Phi(A) = B$?
- ② What about $\Phi(A_i) = B_i$ for $A_1, \ldots, A_k \in M_n$ and $B_1, \ldots, B_k \in M_m$?
- **3** Deduce properties of Φ based on the information of $\Phi(A)$ for some special matrices A.

- ① Given $A \in M_n$ and $B \in M_m$, when is there a completely positive map $\Phi(A) = B$?
- **2** What about $\Phi(A_i) = B_i$ for $A_1, \ldots, A_k \in M_n$ and $B_1, \ldots, B_k \in M_m$?
- **3** Deduce properties of Φ based on the information of $\Phi(A)$ for some special matrices A.
- **1** Let $H_n = \{A \in M_n : A = A^*\}$ be the set of $n \times n$ Hermitian matrices.

- ① Given $A \in M_n$ and $B \in M_m$, when is there a completely positive map $\Phi(A) = B$?
- What about $\Phi(A_i) = B_i$ for $A_1, \ldots, A_k \in M_n$ and $B_1, \ldots, B_k \in M_m$?
- **3** Deduce properties of Φ based on the information of $\Phi(A)$ for some special matrices A.
- **①** Let $H_n = \{A \in M_n : A = A^*\}$ be the set of $n \times n$ Hermitian matrices. Φ is determined by its action on H_n .

- ① Given $A \in M_n$ and $B \in M_m$, when is there a completely positive map $\Phi(A) = B$?
- What about $\Phi(A_i) = B_i$ for $A_1, \ldots, A_k \in M_n$ and $B_1, \ldots, B_k \in M_m$?
- **①** Let $H_n = \{A \in M_n : A = A^*\}$ be the set of $n \times n$ Hermitian matrices. Φ is determined by its action on H_n .
- **5** Given $A_1, \ldots, A_k \in H_n$ and $B_1, \ldots, B_k \in H_m$, under what condition can we have a completely positive map Φ such that $\Phi(A_i) = B_i$?

- ① Given $A \in M_n$ and $B \in M_m$, when is there a completely positive map $\Phi(A) = B$?
- What about $\Phi(A_i) = B_i$ for $A_1, \ldots, A_k \in M_n$ and $B_1, \ldots, B_k \in M_m$?
- **①** Let $H_n = \{A \in M_n : A = A^*\}$ be the set of $n \times n$ Hermitian matrices. Φ is determined by its action on H_n .
- **3** Given $A_1,\ldots,A_k\in H_n$ and $B_1,\ldots,B_k\in H_m$, under what condition can we have a completely positive map Φ such that $\Phi(A_i)=B_i$? If Φ exists, can we choose Φ with additional properties?

- ① Given $A \in M_n$ and $B \in M_m$, when is there a completely positive map $\Phi(A) = B$?
- ② What about $\Phi(A_i) = B_i$ for $A_1, \ldots, A_k \in M_n$ and $B_1, \ldots, B_k \in M_m$?
- **3** Deduce properties of Φ based on the information of $\Phi(A)$ for some special matrices A.
- **①** Let $H_n = \{A \in M_n : A = A^*\}$ be the set of $n \times n$ Hermitian matrices. Φ is determined by its action on H_n .
- Given $A_1,\ldots,A_k\in H_n$ and $B_1,\ldots,B_k\in H_m$, under what condition can we have a completely positive map Φ such that $\Phi(A_i)=B_i$? If Φ exists, can we choose Φ with additional properties? E.g. unital,

- ① Given $A \in M_n$ and $B \in M_m$, when is there a completely positive map $\Phi(A) = B$?
- What about $\Phi(A_i) = B_i$ for $A_1, \ldots, A_k \in M_n$ and $B_1, \ldots, B_k \in M_m$?
- **①** Let $H_n = \{A \in M_n : A = A^*\}$ be the set of $n \times n$ Hermitian matrices. Φ is determined by its action on H_n .
- Given $A_1,\ldots,A_k\in H_n$ and $B_1,\ldots,B_k\in H_m$, under what condition can we have a completely positive map Φ such that $\Phi(A_i)=B_i$? If Φ exists, can we choose Φ with additional properties? E.g. unital, trace preserving,

- ① Given $A \in M_n$ and $B \in M_m$, when is there a completely positive map $\Phi(A) = B$?
- ② What about $\Phi(A_i) = B_i$ for $A_1, \ldots, A_k \in M_n$ and $B_1, \ldots, B_k \in M_m$?
- **①** Let $H_n = \{A \in M_n : A = A^*\}$ be the set of $n \times n$ Hermitian matrices. Φ is determined by its action on H_n .
- **3** Given $A_1,\ldots,A_k\in H_n$ and $B_1,\ldots,B_k\in H_m$, under what condition can we have a completely positive map Φ such that $\Phi(A_i)=B_i$? If Φ exists, can we choose Φ with additional properties? E.g. unital, trace preserving, Choi's rank $\leq r$.

• It is a general interpolation problem for completely positive maps.

- It is a general interpolation problem for completely positive maps.
- It is related to dilation/compression problems of operators.

- It is a general interpolation problem for completely positive maps.
- It is related to dilation/compression problems of operators.
- In quantum information, quantum operations and channels are completely positive maps.

- It is a general interpolation problem for completely positive maps.
- It is related to dilation/compression problems of operators.
- In quantum information, quantum operations and channels are completely positive maps. The study is relevant to problems in quantum tomography, quantum control and quantum error correction.

- It is a general interpolation problem for completely positive maps.
- It is related to dilation/compression problems of operators.
- In quantum information, quantum operations and channels are completely positive maps. The study is relevant to problems in quantum tomography, quantum control and quantum error correction.
- One often tries to deduce the properties of Φ through the study of $\Phi(A)$ for some special A.

- It is a general interpolation problem for completely positive maps.
- It is related to dilation/compression problems of operators.
- In quantum information, quantum operations and channels are completely positive maps. The study is relevant to problems in quantum tomography, quantum control and quantum error correction.
- One often tries to deduce the properties of Φ through the study of $\Phi(A)$ for some special A.
- The study is related to other topics such as matrix inequalities (majorization), unitary orbits (algebraic, analytic and geometric properties), algebraic combinatorics etc.

Theorem

Let $A\in H_n$ and $B\in H_m$. Then there is a completely positive map $\Phi:M_n\to M_m$ such that $\Phi(A)=B$ if and only if there are real numbers $\gamma_1,\gamma_2\geq 0$ such that

$$\gamma_1 \lambda_1(A) \ge \lambda_1(B)$$
 and $\lambda_m(B) \ge \gamma_2 \lambda_n(A)$. (2)

Theorem

Let $A \in H_n$ and $B \in H_m$. Then there is a completely positive map $\Phi: M_n \to M_m$ such that $\Phi(A) = B$ if and only if there are real numbers $\gamma_1, \gamma_2 \geq 0$ such that

$$\gamma_1 \lambda_1(A) \ge \lambda_1(B)$$
 and $\lambda_m(B) \ge \gamma_2 \lambda_n(A)$. (2)

Moreover, there is $\gamma=\gamma_1=\gamma_2>0$ satisfies (2)

Theorem

Let $A\in H_n$ and $B\in H_m$. Then there is a completely positive map $\Phi:M_n\to M_m$ such that $\Phi(A)=B$ if and only if there are real numbers $\gamma_1,\gamma_2\geq 0$ such that

$$\gamma_1 \lambda_1(A) \ge \lambda_1(B)$$
 and $\lambda_m(B) \ge \gamma_2 \lambda_n(A)$. (2)

Moreover, there is $\gamma=\gamma_1=\gamma_2>0$ satisfies (2) if and only if there is a completely positive map $\Phi:M_n\to M_m$ such that $\Phi(I_n)=\gamma I_m$ and $\Phi(A)=B$.

Theorem

Let $A\in H_n$ and $B\in H_m$. Then there is a completely positive map $\Phi:M_n\to M_m$ such that $\Phi(A)=B$ if and only if there are real numbers $\gamma_1,\gamma_2\geq 0$ such that

$$\gamma_1 \lambda_1(A) \ge \lambda_1(B)$$
 and $\lambda_m(B) \ge \gamma_2 \lambda_n(A)$. (2)

Moreover, there is $\gamma=\gamma_1=\gamma_2>0$ satisfies (2) if and only if there is a completely positive map $\Phi:M_n\to M_m$ such that $\Phi(I_n)=\gamma I_m$ and $\Phi(A)=B$. Here, $\lambda_1(A)\geq\cdots\geq\lambda_n(A)$ are the eigenvalues of A.

Theorem

Let $A\in H_n$ and $B\in H_m$. Then there is a completely positive map $\Phi:M_n\to M_m$ such that $\Phi(A)=B$ if and only if there are real numbers $\gamma_1,\gamma_2\geq 0$ such that

$$\gamma_1 \lambda_1(A) \ge \lambda_1(B)$$
 and $\lambda_m(B) \ge \gamma_2 \lambda_n(A)$. (2)

Moreover, there is $\gamma=\gamma_1=\gamma_2>0$ satisfies (2) if and only if there is a completely positive map $\Phi:M_n\to M_m$ such that $\Phi(I_n)=\gamma I_m$ and $\Phi(A)=B$. Here, $\lambda_1(A)\geq\cdots\geq\lambda_n(A)$ are the eigenvalues of A. Let $\lambda(A)=(\lambda_1(A)\geq\cdots\geq\lambda_n(A))$.

Theorem

Let $A\in H_n$ and $B\in H_m$. Then there is a completely positive map $\Phi:M_n\to M_m$ such that $\Phi(A)=B$ if and only if there are real numbers $\gamma_1,\gamma_2\geq 0$ such that

$$\gamma_1 \lambda_1(A) \ge \lambda_1(B)$$
 and $\lambda_m(B) \ge \gamma_2 \lambda_n(A)$. (2)

Moreover, there is $\gamma=\gamma_1=\gamma_2>0$ satisfies (2) if and only if there is a completely positive map $\Phi:M_n\to M_m$ such that $\Phi(I_n)=\gamma I_m$ and $\Phi(A)=B$. Here, $\lambda_1(A)\geq\cdots\geq\lambda_n(A)$ are the eigenvalues of A. Let $\lambda(A)=(\lambda_1(A)\geq\cdots\geq\lambda_n(A))$.

Majorization

Let $\mathbf{a} = (a_1, \dots, a_n)$ and $\mathbf{b} = (b_1, \dots, b_n)$, with $a_i \ge a_{i+1}$ and $b_i \ge b_{i+1}$ for $1 \le i \le n-1$.

Theorem

Let $A\in H_n$ and $B\in H_m$. Then there is a completely positive map $\Phi:M_n\to M_m$ such that $\Phi(A)=B$ if and only if there are real numbers $\gamma_1,\gamma_2\geq 0$ such that

$$\gamma_1 \lambda_1(A) \ge \lambda_1(B)$$
 and $\lambda_m(B) \ge \gamma_2 \lambda_n(A)$. (2)

Moreover, there is $\gamma=\gamma_1=\gamma_2>0$ satisfies (2) if and only if there is a completely positive map $\Phi:M_n\to M_m$ such that $\Phi(I_n)=\gamma I_m$ and $\Phi(A)=B$. Here, $\lambda_1(A)\geq\cdots\geq\lambda_n(A)$ are the eigenvalues of A. Let $\lambda(A)=(\lambda_1(A)\geq\cdots\geq\lambda_n(A))$.

Majorization

Let $\mathbf{a} = (a_1, \dots, a_n)$ and $\mathbf{b} = (b_1, \dots, b_n)$, with $a_i \ge a_{i+1}$ and $b_i \ge b_{i+1}$ for $1 \le i \le n-1$. \mathbf{b} is said to be majorized by \mathbf{a} , $\mathbf{b} \prec \mathbf{a}$ if

Theorem

Let $A\in H_n$ and $B\in H_m$. Then there is a completely positive map $\Phi:M_n\to M_m$ such that $\Phi(A)=B$ if and only if there are real numbers $\gamma_1,\gamma_2\geq 0$ such that

$$\gamma_1 \lambda_1(A) \ge \lambda_1(B)$$
 and $\lambda_m(B) \ge \gamma_2 \lambda_n(A)$. (2)

Moreover, there is $\gamma=\gamma_1=\gamma_2>0$ satisfies (2) if and only if there is a completely positive map $\Phi:M_n\to M_m$ such that $\Phi(I_n)=\gamma I_m$ and $\Phi(A)=B$. Here, $\lambda_1(A)\geq\cdots\geq\lambda_n(A)$ are the eigenvalues of A. Let $\lambda(A)=(\lambda_1(A)\geq\cdots\geq\lambda_n(A))$.

Majorization

Let $\mathbf{a}=(a_1,\ldots,a_n)$ and $\mathbf{b}=(b_1,\ldots,b_n)$, with $a_i\geq a_{i+1}$ and $b_i\geq b_{i+1}$ for $1\leq i\leq n-1$. \mathbf{b} is said to be majorized by $\mathbf{a},\,\mathbf{b}\prec\mathbf{a}$ if $\sum_{i=1}^k b_i\leq \sum_{i=1}^k a_i$ for all $1\leq k\leq n-1$ and $\sum_{i=1}^n b_i=\sum_{i=1}^n a_i$.

Theorem

Theorem

Suppose $A \in H_n$ has k non-negative eigenvalues and n-k negative eigenvalues, and $B \in H_m$. The following conditions are equivalent.

(a) There is a trace preserving completely positive linear map $\Phi: M_n \to M_m$ such that $\phi(A) = B$.

Theorem

- (a) There is a trace preserving completely positive linear map $\Phi: M_n \to M_m$ such that $\phi(A) = B$.
- (b) $\lambda(B) \prec (a_+,0,\dots,0,a_-) \in \mathbb{R}^m$ where $a_+ = \sum_{j=1}^k \lambda_j(A) \quad \text{and} \quad a_- = \sum_{j=k+1}^n \lambda_j(A).$

Theorem

- (a) There is a trace preserving completely positive linear map $\Phi: M_n \to M_m$ such that $\phi(A) = B$.
- (b) $\lambda(B) \prec (a_+,0,\dots,0,a_-) \in \mathbb{R}^m$ where $a_+ = \sum_{j=1}^k \lambda_j(A) \quad \text{and} \quad a_- = \sum_{j=k+1}^n \lambda_j(A).$
- (c) There is an $n \times m$ row stochastic matrix D such that $\lambda(B) = \lambda(A)D$.

Theorem

- (a) There is a trace preserving completely positive linear map $\Phi: M_n \to M_m$ such that $\phi(A) = B$.
- (b) $\lambda(B) \prec (a_+,0,\dots,0,a_-) \in \mathbb{R}^m$ where $a_+ = \sum_{j=1}^k \lambda_j(A) \quad \text{and} \quad a_- = \sum_{j=k+1}^n \lambda_j(A).$
- (c) There is an $n \times m$ row stochastic matrix D such that $\lambda(B) = \lambda(A)D$. $D = (d_{ij})$ with $d_{ij} \geq 0$,

Theorem

- (a) There is a trace preserving completely positive linear map $\Phi: M_n \to M_m$ such that $\phi(A) = B$.
- (b) $\lambda(B) \prec (a_+,0,\dots,0,a_-) \in \mathbb{R}^m$ where $a_+ = \sum_{j=1}^k \lambda_j(A) \quad \text{and} \quad a_- = \sum_{j=k+1}^n \lambda_j(A).$
- (c) There is an $n\times m$ row stochastic matrix D such that $\lambda(B)=\lambda(A)D.$ $D=(d_{i\,j})$ with $d_{i\,j}\geq 0,$ $\sum_{j=1}^n d_{i\,j}=1$ for all $1\leq i\leq n.$

Theorem

- (a) There is a trace preserving completely positive linear map $\Phi: M_n \to M_m$ such that $\phi(A) = B$.
- (b) $\lambda(B) \prec (a_+,0,\dots,0,a_-) \in \mathbb{R}^m$ where $a_+ = \sum_{j=1}^k \lambda_j(A) \quad \text{and} \quad a_- = \sum_{j=k+1}^n \lambda_j(A).$
- (c) There is an $n\times m$ row stochastic matrix D such that $\lambda(B)=\lambda(A)D.$ $D=(d_{i\,j})$ with $d_{i\,j}\geq 0$, $\sum_{j=1}^n d_{i\,j}=1$ for all $1\leq i\leq n.$
- (d) There is an $n \times m$ row stochastic matrix D with the first k rows all equal and the last n-k rows all equal such that $\lambda(B)=\lambda(A)D$.

Theorem

Suppose $A \in H_n$ has k non-negative eigenvalues and n-k negative eigenvalues, and $B \in H_m$. The following conditions are equivalent.

- (a) There is a trace preserving completely positive linear map $\Phi: M_n \to M_m$ such that $\phi(A) = B$.
- (b) $\lambda(B) \prec (a_+,0,\dots,0,a_-) \in \mathbb{R}^m$ where $a_+ = \sum_{j=1}^k \lambda_j(A) \quad \text{and} \quad a_- = \sum_{j=k+1}^n \lambda_j(A).$
- (c) There is an $n\times m$ row stochastic matrix D such that $\lambda(B)=\lambda(A)D.$ $D=(d_{i\,j})$ with $d_{i\,j}\geq 0,$ $\sum_{j=1}^n d_{i\,j}=1$ for all $1\leq i\leq n.$
- (d) There is an $n \times m$ row stochastic matrix D with the first k rows all equal and the last n-k rows all equal such that $\lambda(B)=\lambda(A)D$.

Remark For density matrices, $(A,\ B\geq 0, tr\ A=tr\ B=1)$, we have $\lambda(B)\prec (1,0,\dots,0)$ and condition (b) holds.

Theorem

Let $A \in H_n$ and $B \in H_m$. The following conditions are equivalent.

Theorem

Let $A \in H_n$ and $B \in H_m$. The following conditions are equivalent.

• There is a unital completely positive linear map Φ such that $\Phi(A) = B$.

Theorem

Let $A \in H_n$ and $B \in H_m$. The following conditions are equivalent.

- There is a unital completely positive linear map Φ such that $\Phi(A)=B.$
- $\lambda_n(A) \leq \lambda_j(B) \leq \lambda_1(A)$ for all $j = 1, \dots, m$.

Theorem

Let $A \in H_n$ and $B \in H_m$. The following conditions are equivalent.

- There is a unital completely positive linear map Φ such that $\Phi(A)=B.$
- $\lambda_n(A) \leq \lambda_j(B) \leq \lambda_1(A)$ for all $j = 1, \dots, m$.
- There is an $n \times m$ column stochastic matrix D such that $\lambda(B) = \lambda(A)D$.

Theorem

Let $A \in H_n$ and $B \in H_m$. The following conditions are equivalent.

- \bullet There is a unital completely positive linear map Φ such that $\Phi(A)=B.$
- $\lambda_n(A) \leq \lambda_j(B) \leq \lambda_1(A)$ for all $j = 1, \dots, m$.
- There is an $n \times m$ column stochastic matrix D such that $\lambda(B) = \lambda(A)D$.

Remark The condition may fail even if A and B are density matrices.

Theorem

Let $A \in H_n$ and $B \in H_m$. The following conditions are equivalent.

- There is a unital completely positive linear map Φ such that $\Phi(A)=B.$
- $\lambda_n(A) \leq \lambda_j(B) \leq \lambda_1(A)$ for all $j = 1, \dots, m$.
- There is an $n \times m$ column stochastic matrix D such that $\lambda(B) = \lambda(A)D$.

Remark The condition may fail even if A and B are density matrices.

Question

Suppose there is a unital completely positive map sending \boldsymbol{A} to \boldsymbol{B} ,

Theorem

Let $A \in H_n$ and $B \in H_m$. The following conditions are equivalent.

- There is a unital completely positive linear map Φ such that $\Phi(A)=B.$
- $\lambda_n(A) \leq \lambda_j(B) \leq \lambda_1(A)$ for all $j = 1, \dots, m$.
- There is an $n \times m$ column stochastic matrix D such that $\lambda(B) = \lambda(A)D$.

Remark The condition may fail even if A and B are density matrices.

Question

Suppose there is a unital completely positive map sending A to B, and a trace preserving completely positive map sending A to B.

Theorem

Let $A \in H_n$ and $B \in H_m$. The following conditions are equivalent.

- \bullet There is a unital completely positive linear map Φ such that $\Phi(A)=B.$
- $\lambda_n(A) \leq \lambda_j(B) \leq \lambda_1(A)$ for all $j = 1, \dots, m$.
- There is an $n \times m$ column stochastic matrix D such that $\lambda(B) = \lambda(A)D$.

Remark The condition may fail even if A and B are density matrices.

Question

Suppose there is a unital completely positive map sending A to B, and a trace preserving completely positive map sending A to B. Is there a unital and trace preserving completely positive map sending A to B?

Example

Suppose A = diag(4, 1, 1, 0) and B = diag(3, 3, 0, 0).

Example

Suppose $A={
m diag}\,(4,1,1,0)$ and $B={
m diag}\,(3,3,0,0).$ Then there is a trace preserving CP map sending A to B,

Example

Suppose $A=\mathrm{diag}\,(4,1,1,0)$ and $B=\mathrm{diag}\,(3,3,0,0).$ Then there is a trace preserving CP map sending A to B, and also a unital CP map sending A to B.

Example

Suppose $A={
m diag}\,(4,1,1,0)$ and $B={
m diag}\,(3,3,0,0).$ Then there is a trace preserving CP map sending A to B, and also a unital CP map sending A to B. Let

$$A_1 = A - I_4 = \operatorname{diag}(3, 0, 0, -1)$$
 and $B_1 = B - I_4 = \operatorname{diag}(2, 2, -1, -1)$.

Example

Suppose $A={
m diag}\,(4,1,1,0)$ and $B={
m diag}\,(3,3,0,0).$ Then there is a trace preserving CP map sending A to B, and also a unital CP map sending A to B. Let

 $A_1 = A - I_4 = \operatorname{diag}(3,0,0,-1)$ and $B_1 = B - I_4 = \operatorname{diag}(2,2,-1,-1)$. Then there is no trace preserving CP map sending A_1 to B_1 .

Example

Suppose $A={
m diag}\,(4,1,1,0)$ and $B={
m diag}\,(3,3,0,0).$ Then there is a trace preserving CP map sending A to B, and also a unital CP map sending A to B. Let

 $A_1 = A - I_4 = \mathrm{diag}\,(3,0,0,-1)$ and $B_1 = B - I_4 = \mathrm{diag}\,(2,2,-1,-1)$. Then there is no trace preserving CP map sending A_1 to B_1 . Hence, there is no unital trace preserving CP map sending A to B.

Example

Suppose $A={
m diag}\,(4,1,1,0)$ and $B={
m diag}\,(3,3,0,0).$ Then there is a trace preserving CP map sending A to B, and also a unital CP map sending A to B. Let

 $A_1=A-I_4={
m diag}\,(3,0,0,-1)$ and $B_1=B-I_4={
m diag}\,(2,2,-1,-1).$ Then there is no trace preserving CP map sending A_1 to B_1 . Hence, there is no unital trace preserving CP map sending A to B.

Randomized unitary channel

• Suppose $\Phi: M_n \to M_n$ is given by $\Phi(A) = \sum_{j=1}^r t_i U_j^* A U_j$, where U_1, \dots, U_r are unitaries and $t_i \geq 0$, with $\sum_{j=1}^r t_i = 1$.

Example

Suppose $A={
m diag}\,(4,1,1,0)$ and $B={
m diag}\,(3,3,0,0).$ Then there is a trace preserving CP map sending A to B, and also a unital CP map sending A to B. Let

 $A_1=A-I_4={
m diag}\,(3,0,0,-1)$ and $B_1=B-I_4={
m diag}\,(2,2,-1,-1).$ Then there is no trace preserving CP map sending A_1 to B_1 . Hence, there is no unital trace preserving CP map sending A to B.

Randomized unitary channel

• Suppose $\Phi: M_n \to M_n$ is given by $\Phi(A) = \sum_{j=1}^r t_i U_j^* A U_j$, where U_1, \dots, U_r are unitaries and $t_i \geq 0$, with $\sum_{j=1}^r t_i = 1$. Then Φ is known as a randomized unitary channel in quantum information.

Example

Suppose $A={
m diag}\,(4,1,1,0)$ and $B={
m diag}\,(3,3,0,0).$ Then there is a trace preserving CP map sending A to B, and also a unital CP map sending A to B. Let

 $A_1 = A - I_4 = \mathrm{diag}\,(3,0,0,-1)$ and $B_1 = B - I_4 = \mathrm{diag}\,(2,2,-1,-1)$. Then there is no trace preserving CP map sending A_1 to B_1 . Hence, there is no unital trace preserving CP map sending A to B.

Randomized unitary channel

• Suppose $\Phi: M_n \to M_n$ is given by $\Phi(A) = \sum_{j=1}^r t_i U_j^* A U_j$, where U_1, \dots, U_r are unitaries and $t_i \geq 0$, with $\sum_{j=1}^r t_i = 1$. Then Φ is known as a randomized unitary channel in quantum information. In this case, Φ is a unital and trace preserving CP map.

Example

Suppose $A={
m diag}\,(4,1,1,0)$ and $B={
m diag}\,(3,3,0,0).$ Then there is a trace preserving CP map sending A to B, and also a unital CP map sending A to B. Let

 $A_1=A-I_4={
m diag}\,(3,0,0,-1)$ and $B_1=B-I_4={
m diag}\,(2,2,-1,-1).$ Then there is no trace preserving CP map sending A_1 to B_1 . Hence, there is no unital trace preserving CP map sending A to B.

Randomized unitary channel

- Suppose $\Phi: M_n \to M_n$ is given by $\Phi(A) = \sum_{j=1}^r t_i U_j^* A U_j$, where U_1, \dots, U_r are unitaries and $t_i \geq 0$, with $\sum_{j=1}^r t_i = 1$. Then Φ is known as a randomized unitary channel in quantum information. In this case, Φ is a unital and trace preserving CP map.
- For $n \geq 3$, there exists a unital and trace preserving CP map $\Phi: M_n \to M_n$ which is not a randomized unitary channel.

Let $A, B \in H_n$. The following conditions are equivalent.

 $\bullet \ \Phi(A) = B \ \text{for a unital trace preserving CP map } \Phi.$

- $\Phi(A) = B$ for a unital trace preserving CP map Φ .
- $\Phi(A) = B$ for a randomized unitary channel Φ .

- $\Phi(A) = B$ for a unital trace preserving CP map Φ .
- $\Phi(A) = B$ for a randomized unitary channel Φ .
- $\Phi(A)=B$ for a randomized unitary channel Φ , with all $t_i=1/n$.

- $\Phi(A) = B$ for a unital trace preserving CP map Φ .
- $\Phi(A) = B$ for a randomized unitary channel Φ .
- $\Phi(A)=B$ for a randomized unitary channel Φ , with all $t_i=1/n$.
- For each $t \in \mathbb{R}$, there exists a trace preserving CP map Φ_t such that $\Phi_t(A-tI) = B-tI$.

- $\Phi(A) = B$ for a unital trace preserving CP map Φ .
- $\Phi(A) = B$ for a randomized unitary channel Φ .
- $\Phi(A) = B$ for a randomized unitary channel Φ , with all $t_i = 1/n$.
- For each $t \in \mathbb{R}$, there exists a trace preserving CP map Φ_t such that $\Phi_t(A-tI) = B-tI$.
- $\lambda(B) = \operatorname{diag}(U^*AU)$ for some unitary U.

- $\Phi(A) = B$ for a unital trace preserving CP map Φ .
- $\Phi(A) = B$ for a randomized unitary channel Φ .
- $\Phi(A) = B$ for a randomized unitary channel Φ , with all $t_i = 1/n$.
- For each $t \in \mathbb{R}$, there exists a trace preserving CP map Φ_t such that $\Phi_t(A-tI) = B-tI$.
- $\lambda(B) = \operatorname{diag}(U^*AU)$ for some unitary U.
- $\lambda(B) \prec \lambda(A)$

- $\Phi(A) = B$ for a unital trace preserving CP map Φ .
- $\Phi(A) = B$ for a randomized unitary channel Φ .
- $\Phi(A) = B$ for a randomized unitary channel Φ , with all $t_i = 1/n$.
- For each $t \in \mathbb{R}$, there exists a trace preserving CP map Φ_t such that $\Phi_t(A-tI) = B-tI$.
- $\lambda(B) = \operatorname{diag}(U^*AU)$ for some unitary U.
- $\lambda(B) \prec \lambda(A)$
- There is an $n \times n$ doubly stochastic (d.s.) matrix D such that $\lambda(B) = \lambda(A)D$.

Let $A, B \in H_n$. The following conditions are equivalent.

- $\Phi(A) = B$ for a unital trace preserving CP map Φ .
- $\Phi(A) = B$ for a randomized unitary channel Φ .
- $\Phi(A) = B$ for a randomized unitary channel Φ , with all $t_i = 1/n$.
- For each $t \in \mathbb{R}$, there exists a trace preserving CP map Φ_t such that $\Phi_t(A-tI) = B-tI$.
- $\lambda(B) = \operatorname{diag}(U^*AU)$ for some unitary U.
- $\lambda(B) \prec \lambda(A)$
- There is an $n \times n$ doubly stochastic (d.s.) matrix D such that $\lambda(B) = \lambda(A)D$.

D is d.s. if it is both row stochastic and column stochastic.

We will use $CP_r(n,m)$ to denote CP maps with Choi's rank $\leq r$

We will use $CP_r(n,m)$ to denote CP maps with Choi's rank $\leq r$ and $CP(n,m) = \bigcup_{r \geq 1} CP_r(n,m)$.

We will use $CP_r(n,m)$ to denote CP maps with Choi's rank $\leq r$ and $CP(n,m) = \bigcup_{r>1} CP_r(n,m)$.

Theorem

We will use $CP_r(n,m)$ to denote CP maps with Choi's rank $\leq r$ and $CP(n,m)=\bigcup_{r>1}CP_r(n,m).$

Theorem

Let $A \in H_n$ and $B \in H_m$. Suppose $nr \ge m$. The following conditions are equivalent.

• There exists $\Phi \in CP_r(n,m)$ such that $\Phi(A) = B$.

We will use $CP_r(n,m)$ to denote CP maps with Choi's rank $\leq r$ and $CP(n,m)=\bigcup_{r>1}CP_r(n,m).$

Theorem

- There exists $\Phi \in CP_r(n,m)$ such that $\Phi(A) = B$.
- There exists an $(nr) \times m$ matrix F such that $B = F^*(A \otimes I_r)F$.

We will use $CP_r(n,m)$ to denote CP maps with Choi's rank $\leq r$ and $CP(n,m)=\bigcup_{r>1}CP_r(n,m).$

Theorem

- There exists $\Phi \in CP_r(n,m)$ such that $\Phi(A) = B$.
- There exists an $(nr) \times m$ matrix F such that $B = F^*(A \otimes I_r)F$.
- The number of positive (negative) eigenvalues of $A \otimes I_r$ is not less than the number of positive (negative) eigenvalues of B.

Theorem

Theorem

Let $A \in H_n$ and $B \in H_m$. Suppose $nr \ge m$. The following conditions are equivalent.

• There exists a unital $\Phi \in CP_r(n,m)$ such that $\Phi(A) = B$.

Theorem

Let $A \in H_n$ and $B \in H_m$. Suppose $nr \ge m$. The following conditions are equivalent.

- There exists a unital $\Phi \in CP_r(n,m)$ such that $\Phi(A) = B$.
- B is a compression of $A\otimes I_r$, i.e. $B=F^*(A\otimes I_r)F$ for some $(nr)\times m$ F such that $F^*F=I_m$.

Theorem

Let $A \in H_n$ and $B \in H_m$. Suppose $nr \ge m$. The following conditions are equivalent.

- There exists a unital $\Phi \in CP_r(n,m)$ such that $\Phi(A) = B$.
- B is a compression of $A\otimes I_r$, i.e. $B=F^*(A\otimes I_r)F$ for some $(nr)\times m$ F such that $F^*F=I_m$.
- The eigenvalues of $A \otimes I_r$ interlace those of B, i.e.,

$$\lambda_j(A \otimes I_r) \ge \lambda_j(B)$$
 and $\lambda_{m+1-j}(B) \ge \lambda_{n+1-j}(A \otimes I_r)$

for $1 \leq j \leq m$.

Theorem

Let $A \in H_n$ and $B \in H_m$. Suppose $nr \ge m$. The following conditions are equivalent.

- There exists a unital $\Phi \in CP_r(n,m)$ such that $\Phi(A) = B$.
- B is a compression of $A\otimes I_r$, i.e. $B=F^*(A\otimes I_r)F$ for some $(nr)\times m$ F such that $F^*F=I_m$.
- The eigenvalues of $A \otimes I_r$ interlace those of B, i.e.,

$$\lambda_j(A \otimes I_r) \ge \lambda_j(B)$$
 and $\lambda_{m+1-j}(B) \ge \lambda_{n+1-j}(A \otimes I_r)$

for $1 \leq j \leq m$.

Remark Even if A,B are density matrices, the roles of A and B are not symmetric in the last two theorems.

Theorem

Theorem

Let $A \in H_n$ and $B \in H_m$ be positive semidefinite, with $mr \ge n$. The following conditions are equivalent.

(a) There exists a trace preserving $\Phi \in CP_r(n,m)$ such that $\Phi(A) = B$.

Theorem

- (a) There exists a trace preserving $\Phi \in CP_r(n,m)$ such that $\Phi(A)=B.$
- (b) There exists a unitary $U\in M_{mr}$ such that $U^*(A\oplus O_{mr-n})U=(C_{ij}),\ C_{ij}\in M_m$

Theorem

- (a) There exists a trace preserving $\Phi \in CP_r(n,m)$ such that $\Phi(A)=B.$
- (b) There exists a unitary $U \in M_{mr}$ such that $U^*(A \oplus O_{mr-n})U = (C_{ij}), C_{ij} \in M_m$ with $B = \sum_{j=1}^r C_{jj}$.

Theorem

- (a) There exists a trace preserving $\Phi \in CP_r(n,m)$ such that $\Phi(A)=B.$
- (b) There exists a unitary $U \in M_{mr}$ such that $U^*(A \oplus O_{mr-n})U = (C_{ij}), C_{ij} \in M_m$ with $B = \sum_{j=1}^r C_{jj}$.
- (c) There exist positive semidefinite matrices $C_1,\ldots,C_r\in H_m$,

Theorem

- (a) There exists a trace preserving $\Phi \in CP_r(n,m)$ such that $\Phi(A)=B.$
- (b) There exists a unitary $U \in M_{mr}$ such that $U^*(A \oplus O_{mr-n})U = (C_{ij}), C_{ij} \in M_m$ with $B = \sum_{j=1}^r C_{jj}$.
- (c) There exist positive semidefinite matrices $C_1, \ldots, C_r \in H_m$, and unitary matrices $U_1, \ldots, U_r \in M_n$

Theorem

- (a) There exists a trace preserving $\Phi \in CP_r(n,m)$ such that $\Phi(A)=B.$
- (b) There exists a unitary $U \in M_{mr}$ such that $U^*(A \oplus O_{mr-n})U = (C_{ij}), C_{ij} \in M_m$ with $B = \sum_{j=1}^r C_{jj}$.
- (c) There exist positive semidefinite matrices $C_1,\ldots,C_r\in H_m$, and unitary matrices $U_1,\ldots,U_r\in M_n$ such that $A=\sum_{j=1}^r U_j^*\left(C_j\oplus O_{n-m}\right)U_j$ and $B=\sum_{j=1}^r C_j$.

Theorem

- (a) There exists a trace preserving $\Phi \in CP_r(n,m)$ such that $\Phi(A)=B.$
- (b) There exists a unitary $U \in M_{mr}$ such that $U^*(A \oplus O_{mr-n})U = (C_{ij}), C_{ij} \in M_m$ with $B = \sum_{j=1}^r C_{jj}$.
- (c) There exist positive semidefinite matrices $C_1,\ldots,C_r\in H_m$, and unitary matrices $U_1,\ldots,U_r\in M_n$ such that $A=\sum_{j=1}^r U_j^*\left(C_j\oplus O_{n-m}\right)U_j$ and $B=\sum_{j=1}^r C_j$.
- (d) There exists a trace preserving $\Psi \in CP_r(m,n)$ such that $\Psi(B) = A$.

Theorem

Let $A \in H_n$ and $B \in H_m$ be positive semidefinite, with $mr \ge n$. The following conditions are equivalent.

- (a) There exists a trace preserving $\Phi \in CP_r(n,m)$ such that $\Phi(A)=B.$
- (b) There exists a unitary $U \in M_{mr}$ such that $U^*(A \oplus O_{mr-n})U = (C_{ij}), \ C_{ij} \in M_m$ with $B = \sum_{j=1}^r C_{jj}$.
- (c) There exist positive semidefinite matrices $C_1,\ldots,C_r\in H_m$, and unitary matrices $U_1,\ldots,U_r\in M_n$ such that $A=\sum_{j=1}^r U_j^*\left(C_j\oplus O_{n-m}\right)U_j$ and $B=\sum_{j=1}^r C_j$.
- (d) There exists a trace preserving $\Psi \in CP_r(m,n)$ such that $\Psi(B) = A.$

 C_j can be choose in the unitary orbit of some $C \in H_m$.

Theorem

Let $A \in H_n$ and $B \in H_m$ be positive semidefinite, with $mr \ge n$. The following conditions are equivalent.

- (a) There exists a trace preserving $\Phi \in CP_r(n,m)$ such that $\Phi(A)=B.$
- (b) There exists a unitary $U \in M_{mr}$ such that $U^*(A \oplus O_{mr-n})U = (C_{ij}), C_{ij} \in M_m$ with $B = \sum_{j=1}^r C_{jj}$.
- (c) There exist positive semidefinite matrices $C_1,\ldots,C_r\in H_m$, and unitary matrices $U_1,\ldots,U_r\in M_n$ such that $A=\sum_{j=1}^r U_j^*\left(C_j\oplus O_{n-m}\right)U_j$ and $B=\sum_{j=1}^r C_j$.
- (d) There exists a trace preserving $\Psi \in CP_r(m,n)$ such that $\Psi(B) = A.$

 C_j can be choose in the unitary orbit of some $C \in H_m$.

Remark Conditions (c) can be expressed in terms of eigenvalue inequalities using Littlewood-Richardson rules in Schubert calculus.

Theorem

Suppose $\{A_1,\ldots,A_k\}$ and $\{B_1,\ldots,B_k\}$ are commuting families of matrices in M_n and M_m . Then there is a unital / trace preserving / unital and trace preserving completely positive linear maps Φ such that

$$\Phi(A_j) = B_j \qquad \text{ for } j = 1, \dots, k$$

Theorem

Suppose $\{A_1,\ldots,A_k\}$ and $\{B_1,\ldots,B_k\}$ are commuting families of matrices in M_n and M_m . Then there is a unital / trace preserving / unital and trace preserving completely positive linear maps Φ such that

$$\Phi(A_j) = B_j \qquad \text{ for } j = 1, \dots, k$$

if and only if there is an $n \times m$ column / row / doubly stochastic matrix D such that $\lambda(B_j) = \lambda(A_j)D$ for $j=1,\ldots,k$.

Theorem

Suppose $\{A_1,\ldots,A_k\}$ and $\{B_1,\ldots,B_k\}$ are commuting families of matrices in M_n and M_m . Then there is a unital / trace preserving / unital and trace preserving completely positive linear maps Φ such that

$$\Phi(A_j) = B_j \qquad \text{ for } j = 1, \dots, k$$

if and only if there is an $n \times m$ column / row / doubly stochastic matrix D such that $\lambda(B_j) = \lambda(A_j)D$ for $j=1,\ldots,k$.

Question What about non-commuting families?

Theorem

Suppose $\{A_1,\ldots,A_k\}$ and $\{B_1,\ldots,B_k\}$ are commuting families of matrices in M_n and M_m . Then there is a unital / trace preserving / unital and trace preserving completely positive linear maps Φ such that

$$\Phi(A_j) = B_j \qquad \text{ for } j = 1, \dots, k$$

if and only if there is an $n \times m$ column / row / doubly stochastic matrix D such that $\lambda(B_j) = \lambda(A_j)D$ for $j=1,\ldots,k$.

Question What about non-commuting families? Restricted Choi's rank?

Theorem

Suppose $\{A_1,\ldots,A_k\}$ and $\{B_1,\ldots,B_k\}$ are commuting families of matrices in M_n and M_m . Then there is a unital / trace preserving / unital and trace preserving completely positive linear maps Φ such that

$$\Phi(A_j) = B_j \qquad \text{ for } j = 1, \dots, k$$

if and only if there is an $n \times m$ column / row / doubly stochastic matrix D such that $\lambda(B_j) = \lambda(A_j)D$ for $j=1,\ldots,k$.

Question What about non-commuting families? Restricted Choi's rank? Consider the case when k = 2. Suppose $A_1, A_2 \in H_n$ and $B_1, B_2 \in H_m$.

Theorem

Suppose $\{A_1,\ldots,A_k\}$ and $\{B_1,\ldots,B_k\}$ are commuting families of matrices in M_n and M_m . Then there is a unital / trace preserving / unital and trace preserving completely positive linear maps Φ such that

$$\Phi(A_j) = B_j \qquad \text{ for } j = 1, \dots, k$$

if and only if there is an $n \times m$ column / row / doubly stochastic matrix D such that $\lambda(B_j) = \lambda(A_j)D$ for $j=1,\ldots,k$.

Question What about non-commuting families? Restricted Choi's rank?

Consider the case when k=2. Suppose $A_1,A_2\in H_n$ and $B_1,B_2\in H_m$. Let $A=A_1+iA_2\in M_n$ and $B=B_1+iB_2$.

Theorem

Suppose $\{A_1,\ldots,A_k\}$ and $\{B_1,\ldots,B_k\}$ are commuting families of matrices in M_n and M_m . Then there is a unital / trace preserving / unital and trace preserving completely positive linear maps Φ such that

$$\Phi(A_j) = B_j \qquad \text{ for } j = 1, \dots, k$$

if and only if there is an $n \times m$ column / row / doubly stochastic matrix D such that $\lambda(B_j) = \lambda(A_j)D$ for $j = 1, \dots, k$.

Question What about non-commuting families? Restricted Choi's rank?

Consider the case when k=2. Suppose $A_1,A_2\in H_n$ and $B_1,B_2\in H_m$. Let $A=A_1+iA_2\in M_n$ and $B=B_1+iB_2$. We will study $B=\Phi(A)$.

Let $T \in \mathcal{B}(\mathcal{H})$.

Let $T \in \mathcal{B}(\mathcal{H})$. The numerical range of A is $W(T) = \{ \langle T\mathbf{x}, \mathbf{x} \rangle : \|x\| = 1 \}.$

• (Mirman, 1968) Let $A \in M_3$ be normal. Then $B = \Phi(A)$ for a unital CP map Φ if and only if

Let $T \in \mathcal{B}(\mathcal{H})$. The numerical range of A is $W(T) = \{ \langle T\mathbf{x}, \mathbf{x} \rangle : \|x\| = 1 \}.$

• (Mirman, 1968) Let $A \in M_3$ be normal. Then $B = \Phi(A)$ for a unital CP map Φ if and only if $W(B) \subseteq W(A)$.

- (Mirman, 1968) Let $A \in M_3$ be normal. Then $B = \Phi(A)$ for a unital CP map Φ if and only if $W(B) \subseteq W(A)$.
- (Ando, 1973) Let $A = \begin{bmatrix} 0 & 2 \\ 0 & 0 \end{bmatrix}$.

- (Mirman, 1968) Let $A \in M_3$ be normal. Then $B = \Phi(A)$ for a unital CP map Φ if and only if $W(B) \subseteq W(A)$.
- (Ando, 1973) Let $A=\left[egin{array}{cc} 0 & 2 \\ 0 & 0 \end{array} \right]$. Then $B=\Phi(A)$ for a unital CP map Φ if and only if $W(B)\subseteq W(A)$.

- (Mirman, 1968) Let $A \in M_3$ be normal. Then $B = \Phi(A)$ for a unital CP map Φ if and only if $W(B) \subseteq W(A)$.
- (Ando, 1973) Let $A=\left[egin{array}{cc} 0 & 2 \\ 0 & 0 \end{array} \right]$. Then $B=\Phi(A)$ for a unital CP map Φ if and only if $W(B)\subseteq W(A)$.
- (Choi, Li, 2000, 2001) Let $A_1 \in M_2$ and $A = A_1$ or $A = A_1 \oplus [a]$.

- (Mirman, 1968) Let $A \in M_3$ be normal. Then $B = \Phi(A)$ for a unital CP map Φ if and only if $W(B) \subseteq W(A)$.
- (Ando, 1973) Let $A=\left[egin{array}{cc} 0 & 2 \\ 0 & 0 \end{array} \right]$. Then $B=\Phi(A)$ for a unital CP map Φ if and only if $W(B)\subseteq W(A)$.
- (Choi, Li, 2000, 2001) Let $A_1 \in M_2$ and $A = A_1$ or $A = A_1 \oplus [a]$. Then $B = \Phi(A)$ for a unital CP map Φ if and only if

- (Mirman, 1968) Let $A \in M_3$ be normal. Then $B = \Phi(A)$ for a unital CP map Φ if and only if $W(B) \subseteq W(A)$.
- (Ando, 1973) Let $A=\left[egin{array}{cc} 0 & 2 \\ 0 & 0 \end{array} \right]$. Then $B=\Phi(A)$ for a unital CP map Φ if and only if $W(B)\subseteq W(A)$.
- (Choi, Li, 2000, 2001) Let $A_1 \in M_2$ and $A = A_1$ or $A = A_1 \oplus [a]$. Then $B = \Phi(A)$ for a unital CP map Φ if and only if $W(B) \subseteq W(A)$.

- (Mirman, 1968) Let $A \in M_3$ be normal. Then $B = \Phi(A)$ for a unital CP map Φ if and only if $W(B) \subseteq W(A)$.
- (Ando, 1973) Let $A=\left[egin{array}{cc} 0 & 2 \\ 0 & 0 \end{array} \right]$. Then $B=\Phi(A)$ for a unital CP map Φ if and only if $W(B)\subseteq W(A)$.
- (Choi, Li, 2000, 2001) Let $A_1 \in M_2$ and $A = A_1$ or $A = A_1 \oplus [a]$. Then $B = \Phi(A)$ for a unital CP map Φ if and only if $W(B) \subseteq W(A)$.
- (Choi, Li, 2000) Let $A=\mathrm{diag}\,(1,-1,i,-i)$ or $\begin{bmatrix}0&1&0\\0&0&1\\0&0&0\end{bmatrix}$ and $B=\begin{bmatrix}0&\sqrt{2}\\0&0\end{bmatrix}.$

- (Mirman, 1968) Let $A \in M_3$ be normal. Then $B = \Phi(A)$ for a unital CP map Φ if and only if $W(B) \subseteq W(A)$.
- (Ando, 1973) Let $A=\left[egin{array}{cc} 0 & 2 \\ 0 & 0 \end{array} \right]$. Then $B=\Phi(A)$ for a unital CP map Φ if and only if $W(B)\subseteq W(A)$.
- (Choi, Li, 2000, 2001) Let $A_1 \in M_2$ and $A = A_1$ or $A = A_1 \oplus [a]$. Then $B = \Phi(A)$ for a unital CP map Φ if and only if $W(B) \subseteq W(A)$.
- (Choi, Li, 2000) Let $A={
 m diag}\,(1,-1,i,-i)$ or $\left[egin{array}{ccc} 0&1&0\\0&0&1\\0&0&0 \end{array}\right]$ and
 - $B=\left[\begin{array}{cc}0&\sqrt{2}\\0&0\end{array}\right]$. Then $W(B)\subseteq W(A)$ but there is no unital CP map Φ such that $B=\Phi(A).$

Suppose $A_1, A_2 \in H_n$ and $B_1, B_2 \in H_m$.

Suppose $A_1, A_2 \in H_n$ and $B_1, B_2 \in H_m$. Let $A = A_1 + iA_2$ and $B = B_1 + iB_2$.

• There exists a trace preserving $\Phi \in CP_1(n,m)$ such that $\Phi(A_j) = B_j$ for j=1,2 if and only if the B is unitary similar to $A \oplus O_{m-n}$.

- There exists a trace preserving $\Phi \in CP_1(n,m)$ such that $\Phi(A_j) = B_j$ for j=1,2 if and only if the B is unitary similar to $A \oplus O_{m-n}$.
- There exists a unital $\Phi \in CP_1(n,m)$ such that $\Phi(A_j) = B_j$ for j=1,2 if and only if B is a compression of A,

- There exists a trace preserving $\Phi \in CP_1(n,m)$ such that $\Phi(A_j) = B_j$ for j=1,2 if and only if the B is unitary similar to $A \oplus O_{m-n}$.
- There exists a unital $\Phi \in CP_1(n,m)$ such that $\Phi(A_j) = B_j$ for j=1,2 if and only if B is a compression of A, i.e. there is a unitary U such that B is a principal submatrix of U^*AU .

- There exists a trace preserving $\Phi \in CP_1(n,m)$ such that $\Phi(A_j) = B_j$ for j=1,2 if and only if the B is unitary similar to $A \oplus O_{m-n}$.
- There exists a unital $\Phi \in CP_1(n,m)$ such that $\Phi(A_j) = B_j$ for j=1,2 if and only if B is a compression of A, i.e. there is a unitary U such that B is a principal submatrix of U^*AU . The problem is unsolved for $n=4,\ m=2$

- There exists a trace preserving $\Phi \in CP_1(n,m)$ such that $\Phi(A_j) = B_j$ for j=1,2 if and only if the B is unitary similar to $A \oplus O_{m-n}$.
- There exists a unital $\Phi \in CP_1(n,m)$ such that $\Phi(A_j) = B_j$ for j=1,2 if and only if B is a compression of A, i.e. there is a unitary U such that B is a principal submatrix of U^*AU . The problem is unsolved for n=4, m=2 even when A_1 and A_2 commute.

Theorem [Poon 1992]

Let $\Phi \in CP(n,m)$ be unital and $A_1,\ldots,A_k \in H_n$.

Theorem [Poon 1992]

Let $\Phi \in CP(n,m)$ be unital and $A_1,\ldots,A_k \in H_n$. If $1 \le r \le mn-1$ and $m^2(k+1)-1 < (r+1)^2-\delta_{mn,\,r+1}$,

Theorem [Poon 1992]

Let $\Phi\in CP(n,m)$ be unital and $A_1,\ldots,A_k\in H_n$. If $1\leq r\leq mn-1$ and $m^2(k+1)-1<(r+1)^2-\delta_{mn,\,r+1}$, then there exists a unital $\Psi\in CP_r(n\,m)$ such that for all $1\leq i\leq k$,

$$\Psi(A_i) = \Phi(A_i)$$

Theorem [Poon 1992]

Let $\Phi\in CP(n,m)$ be unital and $A_1,\ldots,A_k\in H_n$. If $1\leq r\leq mn-1$ and $m^2(k+1)-1<(r+1)^2-\delta_{mn,\,r+1}$, then there exists a unital $\Psi\in CP_r(n\,m)$ such that for all $1\leq i\leq k$,

$$\Psi(A_i) = \Phi(A_i)$$

For example, if $n>2,\ k=3$ and r=2m-1 , then the condition is satisfied.

Theorem [Poon 1992]

Let $\Phi\in CP(n,m)$ be unital and $A_1,\ldots,A_k\in H_n$. If $1\leq r\leq mn-1$ and $m^2(k+1)-1<(r+1)^2-\delta_{mn,\,r+1}$, then there exists a unital $\Psi\in CP_r(n\,m)$ such that for all $1\leq i\leq k$,

$$\Psi(A_i) = \Phi(A_i)$$

For example, if $n>2,\ k=3$ and r=2m-1 , then the condition is satisfied.

What about trace preserving completely positive maps?

Thank you for your attention!