INVERSE FUNCTION THEOREM

I use df_x for the linear transformation that is the differential of f at x.

Definition 1. Suppose $S \subseteq \mathbb{R}^n$ is open, $a \in S$, and $f : S \to \mathbb{R}^n$ is a function. We say f is **locally invertible around a** if there is an open set $A \subseteq S$ containing a so that $f(A)$ is open and there is a function $g : f(A) \to A$ so that, for all $x \in A$ and $y \in f(A)$,

$$g(f(x)) = x, \quad f(g(y)) = y.$$

Clearly, it suffices to have $f(A)$ open and f one-to-one on the open set A. It is important to note how f^{-1} depends on the choice of A. If B another open set and $h : f(B) \to B$ is an inverse for f on B, then on $A \cap B$, h and g agree. So changing the set A may change the domain of f^{-1} but not the value of $f^{-1}(x)$ for any point x.

Definition 2. If $S \subseteq \mathbb{R}^n$ is open, then $g : S \to \mathbb{R}^m$ is **Lipschitz** if there is a constant K so that

$$\|g(w) - g(y)\| \leq K\|w - y\|.$$

We will need the following result:

Proposition 3. Linear transformations are Lipschitz. That is, for a linear transformation $L : \mathbb{R}^n \to \mathbb{R}^m$, there is $M > 0$ so that, for all $x, y \in \mathbb{R}^n$,

$$\|Lx - Ly\| \leq M\|x - y\|.$$

We also need the following result:

Proposition 4. Let $S \subseteq \mathbb{R}^n$ is open. If function $f : S \to \mathbb{R}$ is continuous and $T \subseteq S$ is a closed and bounded set, then f attains its maximum and minimum on T. That is, there is $t_0, t_1 \in T$ so that, for all $t \in T$,

$$f(t_0) \leq f(t) \leq f(t_1).$$

Note that f does not need to have an inverse function for $f^{-1}(V)$ to make sense.

Theorem 5 (Local Invertibility). Let $S \subseteq \mathbb{R}^n$ is open, $a \in S$, and $f : S \to \mathbb{R}^n$ is C^1. If df_a is invertible, then f is locally invertible around a and f^{-1} is Lipschitz.

Lemma 6. With the same hypotheses as the theorem, there are $\epsilon, c > 0$ so that, for all $x, z \in B_\epsilon(a)$,

$$\|f(x) - f(z)\| \geq c\|x - z\|.$$

and, for all $x \in B_\epsilon(a)$, df_x is invertible.

Proof of Local Invertibility Theorem. Using the lemma, observe that for $x, z \in B_\epsilon(a)$ with $x \neq z$,

$$\|f(x) - f(z)\| \geq c\|x - z\| > 0$$

and so $f(x) \neq f(z)$, i.e. f is one-to-one on $B_\epsilon(a)$. Thus, there is a function $f^{-1} : f(B_\epsilon(a)) \to B_\epsilon(a)$. Moreover, for $w, y \in f(B_\epsilon(a))$, there are $x, z \in B_\epsilon(a)$ with $w = f(x)$ and $y = f(z)$. Using (7),

$$\|w - y\| \geq c\|f^{-1}(w) - f^{-1}(y)\|.$$
This shows \(f^{-1} \) is Lipschitz (with constant \(1/c \)) and so is continuous.

To see that \(f(B_c(a)) \) is open, fix \(v \) in this set. There is \(x \in B_c(a) \) with \(f(x) = v \). Choose \(s > 0 \) so that \(B_s(x) \) is contained in \(B_c(a) \). Then \(S = \{ y : \|y - x\| = s \} \), the boundary of \(B_s(x) \), is a closed and bounded set. Since \(f \) is continuous, the image, \(f(S) \), is also closed and bounded. By the proposition, there is \(y_0 \in S \) so that the function \(z \mapsto \|f(z) - v\| \) attains its minimum. That is, for all \(y \in S \),

\[
\|f(y) - v\| \geq \|f(y_0) - v\|.
\]

As \(f \) is one-to-one, \(v \) is not in \(f(S) \); so \(d = \|f(y_0) - v\| > 0 \).

We shall show that \(B_{d/2}(v) \) is contained in \(f(B_c(a)) \). Let \(u \in B_{d/2}(v) \) and define a function on \(B_s(x) \) by

\[
g(y) = \|f(y) - u\|^2 = (f(y) - u) \cdot (f(y) - u).
\]

Observe that \(g \) is \(C^1 \) because \(f \) is and by previous work

\[
Dg_y(h) = 2(Df_y)(h) \cdot (f(y) - u).
\]

Since \(B_s(x) \) is a closed and bounded set and \(g \) is continuous, the proposition guarantees that \(g \) attains its minimum value. Observe that at every point of \(S \),

\[
g(y) = \|f(y) - u\|^2 \geq (\|f(y) - v\| - \|v - u\|)^2 \geq \left(d - \frac{d^2}{2} \right) = \frac{d^2}{4},
\]

while

\[
g(x) = \|v - u\|^2 < \frac{d^2}{4}.
\]

Hence the minimum of \(g \) occurs at some interior point \(y_0 \). So by previous work, \(Dg(y_0) = 0 \). But \(df(y_0) \) is invertible by the lemma, so \(f(y_0) - u = 0 \); that is, \(f(y_0) = u \). Therefore \(f(B_c(a)) \) is open.

Proof of Lemma. Let \(T = (df_a)^{-1} \). By the proposition above, there is \(M > 0 \) so that

\[
\|Tu - Tv\| \leq M\|u - v\|.
\]

Letting \(u = T^{-1}(x - a) \) and \(v = T^{-1}(y - a) \), (so \(u = df_a(x - a) \)), we have

\[
\|df_a(x - a) - df_a(y - a)\| \leq \frac{1}{M} \|x - y\|.
\]

Define \(E : S \to \mathbb{R}^n \) by \(E(x) = f(x) - f(a) - df_a(x - a) \). Since \(f \) is \(C^1 \) and linear transformations are infinitely differentiable, \(E \) is \(C^1 \). Notice that

\[
dE_a(h) = df_a(h) - df_a(h) = 0.
\]

In particular, if \(E = (E_1, \ldots, E_n) \), then by the continuity of \(d(E_i)_a \) there is some \(\varepsilon > 0 \) so that

\[
\|d(E_i)z\| \leq \frac{1}{2M\sqrt{n}},
\]

for \(i = 1, \ldots, n \) and all \(z \in B_c(a) \).

Suppose that \(x, z \in B_c(a) \). Then, for each \(i \), by Taylor’s Theorem with linear remainder term, there is \(c_i \in L[x, z] \subset B_c(a) \) so that

\[
|E_i(x) - E_i(z)| = |d(E_i)_{c_i}(x - z)| \leq \frac{1}{2M\sqrt{n}} \|x - z\|.
\]
Using the inverse function identities and moving

\[\text{if there was} \]

\[\text{have that} \]

\[\text{c} \]

The proves (7) with

\[\text{must be invertible}. \]

Thus, \(\| E(x) - E(z) \| \leq \| x - z \| / (2M) \).

As \(f(x) - f(z) = E(x) - E(z) - (d f_a(x - a) - d f_a(z - a)) \),

\[\| f(x) - f(z) \| \geq \| d f_a(x - a) - d f_a(z - a) \| - \| E(x) - E(z) \| \]

\[\geq \frac{1}{M} \| x - z \| - \frac{1}{2M} \| x - z \| = \frac{1}{2M} \| x - z \|. \]

The proves (7) with \(c = 1/(2M) \).

Finally, to see that \(d f_a \) in invertible for each \(x \in B_c(a) \), observe that

\[d E_x(z - x) = d f_a(z - x) - d f_a(z - x). \]

If there was \(z \) so that \(d f_a(z - x) = 0 \), then \(d E_x(z - x) = -d f_a(z - x) \). On the other hand, we have that

\[\| d f_a(z - x) \| \geq \frac{1}{M} \| z - x \|. \quad \| d E_x(z - x) \| \leq \frac{1}{2M} \| z - x \|. \]

This contradiction shows that \(d f_a \) must be invertible.

Recall that we proved that a function \(g \) is differentiable at \(c \) if and only if there is a linear transformation \(L \) and a function \(\epsilon \) so that \(\lim_{x \to c} \epsilon(x) = 0 \) and

\[g(x) = g(c) + L(x - c) + \epsilon(x) \| x - c \|. \]

In this case, \(L \) is \(d g_e \).

Theorem 8 (Inverse Function Theorem). Let \(S \subseteq \mathbb{R}^n \) be open, \(a \in S \), and \(f : S \to \mathbb{R}^n \) is \(C^1 \). If \(d f_a \) is invertible, then \(f^{-1} \) is differentiable at \(b = f(a) \) and

\[d(f^{-1})_b = (d f_{f^{-1}(b)})^{-1}. \]

Proof. Since \(f \) is differentiable at \(a \), there is a function \(\epsilon : S \to \mathbb{R}^n \) with \(\lim_{x \to a} \epsilon(x) = 0 \) and

\[f(x) = f(a) + d f_a(x - a) + \epsilon(x) \| x - a \|. \]

Since \(f \) is locally invertible around \(a \), there is some open set \(A \) containing \(a \) on which \(f \) is one-to-one and \(f^{-1} \) is Lipschitz on the open set \(f(A) \).

For \(x \in A \), there is \(y \in f(A) \) with \(x = f^{-1}(y) \). Using this and \(a = f^{-1}(b) \), we have

\[f(f^{-1}(y)) = f(f^{-1}(b)) + d f(a)(f^{-1}(y) - f^{-1}(b)) + \epsilon(f^{-1}(y)) \| f^{-1}(y) - f^{-1}(b) \|. \]

Using the inverse function identities and moving \(b \) over, we have

\[y - b = d f_a(f^{-1}(y) - f^{-1}(b)) + \epsilon(f^{-1}(y)) \| f^{-1}(y) - f^{-1}(b) \|. \]
Applying \((df_a)^{-1}\) to this equation and using the linearity of \((df_a)^{-1}\), we have
\[
(df_a)^{-1}(y - b) = f^{-1}(y) - f^{-1}(b) + (df_a)^{-1}(\epsilon(f^{-1}(y)))\|f^{-1}(y) - f^{-1}(b)\|.
\]
Then we can rearrange the previous equation to obtain
\[
f^{-1}(y) = f^{-1}(b) + (df_a)^{-1}(y - b) + \eta(y)\|y - b\|.
\]
if we define a new function \(\eta\) on \(f(A)\) by letting \(\eta(b) = 0\) and otherwise
\[
\eta(y) = \frac{-(df_a)^{-1}(\epsilon(f^{-1}(y)))\|f^{-1}(y) - f^{-1}(b)\|}{\|y - b\|}.
\]
To show that \(f^{-1}\) is differentiable at \(b\) and \(d(f^{-1})_b\) is \((df_a)^{-1}\), it suffices to show that
\[
\lim_{y \to b} \eta(y) = 0.
\]
As \(f^{-1}\) is Lipschitz, there is a constant \(K > 0\) so that
\[
\frac{\|f^{-1}(y) - f^{-1}(b)\|}{\|y - b\|} \leq K
\]
for all \(y \in f(A)\). So it suffices to prove that
\[
\lim_{y \to b} -(df_a)^{-1}(\epsilon(f^{-1}(y))) = 0.
\]
Now, as \(y \to b\), \(f^{-1}(y) \to f^{-1}(b) = a\). By our choice of the function \(\epsilon\), as \(f^{-1}(y) \to a\), \(\epsilon(f^{-1}(y)) \to 0\). Since the linear transformation \((df_a)^{-1}\) is continuous, we have the claimed limit.

This concludes the proof.

Corollary 9. \(f^{-1}\) is \(C^1\) on its domain.

This is very rough. Notice first that since \(f^{-1}\) is uniquely defined on its domain, call it \(A\), \(f\) is locally invertible at each point of \(A\). By the lemma, we may assume \(df_a\) is invertible for each \(a \in A\). By the inverse function theorem, we have that \(d(f^{-1})_b = (df_{f^{-1}(b)})^{-1}\) for each \(b \in f(A)\).

To see that this function is continuous, observe first that \(f^{-1}\) is continuous; second, that the map \(x \mapsto df_x\) is continuous; and third, that matrix inversion is continuous. As a composition of three continuous operations, \(d(f^{-1})_b\) is a continuous function of \(b\).