1. Suppose \(F, G : \mathbb{R}^n \rightarrow \mathbb{R} \) satisfy \(\lim_{x \to a} F(x) = L \) and \(\lim_{x \to a} G(x) = M \). Prove that
\[
\lim_{x \to a} F(x)G(x) = LM.
\]

Hint: Look at the proof given in class of the analogous result for sums.

2. Let \(S^* \subset \mathbb{R}^n \) be the set of all limit points of \(S \subset \mathbb{R}^n \). Show that \(S \cup S^* \) is closed, i.e., contains all of its limit points.

3. Consider the function \(F : \mathbb{R}^3 \rightarrow \mathbb{R} \) given by \(F(x, y, z) = x^2 + y^2 + z^2 \).
 (a) Find the differential of \(F \) at \(a = (3, 2, 6) \), \(dF_a \), which is a linear transformation from \(\mathbb{R}^3 \) to \(\mathbb{R}^3 \).
 (b) Using the differential, find an approximate value for \(3.02^2 + 1.97^2 + 5.98^2 \).

4. If \(F : \mathbb{R}^n \rightarrow \mathbb{R}^m \) is linear, show that, for each point \(a \in \mathbb{R}^n \), \(F \) is differentiable at \(a \) and the differential \(dF_a \) equals \(F \).

5. Suppose that \(F : \mathbb{R}^n \rightarrow \mathbb{R}^m \) and \(G : \mathbb{R}^n \rightarrow \mathbb{R}^k \) are both differentiable at \(a \in \mathbb{R}^n \). If \(H : \mathbb{R}^n \rightarrow \mathbb{R}^{m+k} \) is given by \(H(x) = (F(x), G(x)) \) then show directly from the definition that \(H \) is differentiable at \(a \).