Due: Feb 11th

1. If \(A = \{a + a^{-1} : a > 0\} \), then find \(\inf A \) and \(\min A \). Prove your answers (which may be that it doesn’t exist) are correct.

2. Suppose that \(S \) and \(T \) are bounded nonempty subsets of \(\mathbb{R} \).
 (a) If \(S \subseteq T \), prove that \(\inf T \leq \inf S \leq \sup S \leq \sup T \).
 (b) Prove that \(\sup(S \cup T) = \max\{\sup S, \sup T\} \). (Do not assume \(S \) is a subset of \(T \).)
 (c) Find a formula expressing \(\inf(S \cup T) \) in terms of \(\inf S \) and \(\inf T \). You do not need to prove it is correct.

3. Let \(S \) and \(T \) be nonempty subsets of \(\mathbb{R} \) with the following property: \(s \leq t \) for all \(s \in S \) and all \(t \in T \).
 (a) Observe that \(S \) is bounded above and \(T \) is bounded below.
 (b) Prove that \(\sup S \leq \inf T \).
 (c) Give an example of such sets \(S \) and \(T \) where \(S \cap T \) is nonempty.
 (d) Give an example of such sets \(S \) and \(T \) where \(S \cap T = \emptyset \) and \(\sup S = \inf T \).

4. Let \(\mathbb{I} \) be the set of all irrational numbers, i.e., all real numbers that are not rational numbers. Prove that if \(a, b \in \mathbb{R} \) and \(a < b \), then there is \(x \in \mathbb{I} \) with

\[
a < x < b.
\]

Hint: First show that \(\{r + \sqrt{2} : r \in \mathbb{Q}\} \subseteq \mathbb{I} \). You may assume \(\sqrt{2} \in \mathbb{I} \).

5. Let \(A \) and \(B \) be nonempty bounded subsets of \(\mathbb{R} \). If \(S \) is the set of all sums \(a+b \) where \(a \in A \) and \(b \in B \), then prove the following:
 (a) \(\sup S = \sup A + \sup B \), and
 (b) \(\inf S = \inf A + \inf B \).

6. Extra Credit: If \(A \) is a nonempty subset of \(\mathbb{R} \), we call \(b \) an **almost upper bound** for \(A \) if there are only finitely many numbers \(a \in A \) with \(a \geq b \).
 (a) Find all almost upper bounds for each of \(\{n/(n+1) : n \in \mathbb{N}\} \) and \(\{1/n : n \in \mathbb{N}\} \).
 (b) If \(A \) is a bounded infinite set, prove that the set of all almost upper bounds is nonempty and bounded below.
 (c) Find an infinite subset of \(\mathbb{R} \) so that the set of all almost upper bounds is \(\mathbb{R} \).