1. The base of a solid is the region between the curve \(y = 2\sqrt{\sin x} \) and the interval \([0, \pi]\) on the \(x \)-axis. If the cross-sections perpendicular to the \(x \)-axis are semi-circles with diameters running from the \(x \)-axis to the curve \(y = 2\sqrt{\sin x} \), then find the volume of this solid.

Draw a suitable diagram.

Solution. This is a variation on problem 5 in Section 6.1 (semi-circular cross-sections instead of triangles or squares), an assigned homework problem.

For a slice at a fixed value of \(x \), the endpoints of the base in the \(x,y \)-plane are \((x, 0)\) and \((x, 2\sqrt{\sin x})\). The area of a semi-circle \(\pi r^2/2 \), so we need to find the radius, which is half the distance from \((x, 0)\) to \((x, 2\sqrt{\sin x})\), i.e., \(\sqrt{\sin x} \). Thus, the area of each slice is \((\pi \sin x)/2 \).

The limits of integration are \(x = 0 \) and \(x = \pi \).

The volume of the solid is

\[
V = \int_{0}^{\pi} \frac{\pi \sin x}{2} \, dx = \frac{\pi}{2} \int_{0}^{\pi} \sin x = \frac{\pi}{2} \left. -\cos x \right|_{0}^{\pi} = \frac{\pi}{2} (-\cos \pi + \cos 0) = \pi.
\]

2. Using suitable substitutions, evaluate the following integrals:

(a) \(\int \frac{1}{x \ln x} \, dx \)
(b) \(\int_{\ln(\pi/6)}^{\ln(\pi/2)} 2e^{x} \cos e^{x} \, dx \)

Solution. Part (a) is Problem 43 from Section 5.5, an assigned homework problem; part (b) is Problem 23 on page 380.

For (a), we use the substitution \(u = \ln x \), with \(du = \frac{1}{x} \, dx \), to get the indefinite integral

\[
\int \frac{1}{u} \, du = \ln |u| + C = \ln |\ln x| + C
\]

For (b), we use the substitution \(u = e^{x} \), with \(du = e^{x} \, dx \). Notice that if \(x = \ln(\pi/6) \), then \(u = \pi/6 \) and if \(x = \ln(\pi/2) \) then \(u = \pi/2 \). Thus

\[
\int_{\ln(\pi/6)}^{\ln(\pi/2)} 2e^{x} \cos e^{x} \, dx = \int_{\pi/6}^{\pi/2} 2 \cos x \, dx = 2 \sin x|_{\pi/6}^{\pi/2} = 2 \sin(\pi/2) - 2 \sin(\pi/6) = 1.
\]

3. Set up the integral(s) for the following area BUT DO NOT evaluate the integral(s).

The area of the region in the first quadrant bounded on the left by the \(y \)-axis, below by the curve \(x = 2\sqrt{y} \), above left by the curve \(x = (y - 1)^2 \) and above right by the line \(x = 3 - y \).
Solution. This is the problem from Homework 10, except you don’t have to evaluate the integral.

Notice that the intersection points of \(x = 2\sqrt{y} \) and \(x = 3 - y \) is \((2,1)\) as can be checked by substituting the point into both curves. Similarly the intersection point of \(x = (y - 1)^2 \) and \(x = 3 - y \) is \((1,2)\).

For \(y \) from 0 to 1, the upper endpoint is \((2\sqrt{y}, y)\) and the lower endpoint is \((0,y)\), so the length is \(2\sqrt{y}\). For \(y \) from 1 to 2, the upper endpoint is \((3-y, y)\) and the lower endpoint is \(((y - 1)^2, y)\), so the length is \(3 - y - (y - 1)^2 = 2 + y - y^2\). Thus, the area is \(\int_0^1 2\sqrt{y} \, dy + \int_1^2 \left(2 + y - y^2\right) \, dy\).

4. Use l’Hôpital’s Rule to evaluate \(\lim_{\theta \to \pi/2} \frac{1 - \sin \theta}{1 + \cos 2\theta} \).

Be sure to justify the use of l’Hôpital’s Rule.

Solution. This is Problem 19 from Section 4.6, an assigned homework problem.

Notice that \(1 - \sin(\pi/2) = 0\) and \(1 + \cos(\pi) = 0\), so this limit is a 0/0 indeterminate form and we can apply l’Hôpital’s Rule.
\[
\lim_{\theta \to \pi/2} \frac{1 - \sin \theta}{1 + \cos 2\theta} = \lim_{\theta \to \pi/2} \frac{-\cos(\theta)}{-2 \sin \theta} = 0
\]
\[
\lim_{\theta \to \pi/2} \frac{-\cos(\pi/2)}{-2 \sin(\pi/2)} = 0
\]
\[
= \lim_{\theta \to \pi/2} \frac{\sin(\theta)}{-4 \cos 2\theta}
\]
\[
= \frac{\sin(\pi/2)}{-4 \cos(\pi/2)} = \frac{1}{4}.
\]

5. Consider the function \(f(x) = 3 - x^2 \) on the interval \([0, 1]\). Set up in \(\Sigma \)-notation but do not evaluate the Riemann sum for this function using a partition of \([0, 1]\) into \(n \) equal subintervals and the right-hand rule.

Solution. This is part of Homework 9 with the function \(3x^2 \) replaced by \(3 - x^2 \) and the interval \([0, 2]\) by \([0, 1]\).

We divide the interval \([0, 1]\) into \(n \) intervals
\[
\left[0, \frac{1}{n} \right], \left[\frac{1}{n}, \frac{2}{n} \right], \ldots, \left[\frac{n-1}{n}, \frac{n}{n} \right].
\]

So, for each “rectangle” we have a base of \(1/n \).

We are evaluating the function at right-hand endpoint of each interval, i.e., \(1/n \) on \([0, 1/n]\), \(2/n \) on \([1/n, 2/n]\), and so on. Thus, the formula for the \(k \)th term, which is for the interval \([\frac{k-1}{n}, \frac{k}{n}]\), is
\[
f \left(\frac{k}{n} \right) \cdot \frac{1}{n} = \left(3 - \frac{k^2}{n^2} \right) \frac{1}{n} = \frac{3}{n} - \frac{k^2}{n^3}\]

The Riemann sum then is \(\sum_{k=1}^{n} \frac{3}{n} - \frac{k^2}{n^3} \).

6. You are designing a rectangular poster to contain 100 in\(^2\) of printing with an 8 inch margin at top and bottom and 2 in margin at each side. What overall dimensions for the piece of paper will minimize the amount of paper used?

Solution. This is a variation on Problem 11 from Section 4.5, an assigned homework problem.

Let the height and width of the poster be \(x \) and \(y \) respectively. We want to minimize the area, which is \(A = xy \).

Then the area available for printing is \((x - 16)(y - 4) \), and this has to be 100 sq. in., so \((x - 16)(y - 4) = 100 \). Solving this equation for \(y \), we have \(y = 4 + 100/(x - 16) \). Substituting this into the the formula, we have
\[
A(x) = x(4 + \frac{100}{x - 16}) = 4x + \frac{100x}{x - 16}.
\]
Notice that x must be greater than 16 and can be as large as we like, so the domain is $(16, +\infty)$. Differentiating, we have

$$A' = 4 + \frac{(x-16)100 - 100x}{(x-16)^2} = 4 - \frac{1600}{(x-16)^2} = \frac{4(x-16)^2 - 1600}{(x-16)^2}.$$

In order for the derivative to be zero, we must have

$$4(x - 16)^2 - 1600 = 0$$

$$(x - 16)^2 = 400$$

$$(x - 16) = 20$$

$$x = 36$$

and

$$y = 4 + \frac{100}{36 - 16} = 9$$

To see that this answer is indeed a minimum, observe that

$$A''(x) = \frac{d}{dx} \left(4 - \frac{1600}{(x - 16)^2} \right) = \frac{3200}{(x - 16)^3}$$

and so $A''(36) > 0$, so by the second derivative test, $A(x)$ has a minimum at $x = 36$.