1. Using a limit of slopes of secant lines, find the slope of \(y = (x - 1)^2 \) at \(P = (3, 4) \) and the equation of the tangent line through this point.

Solution. Let \(Q \) be the point \((3+h, (3+h-1)^2)\). Notice that \((3+h-1)^2 = (2 + h)^2 = 4 + 4h + h^2\). The slope of the line through \(P \) and \(Q \) is

\[
\frac{(4 + 4h + h^2) - 4}{3 + h - 3} = \frac{4h + h^2}{h} = 4 + h.
\]

Taking the limit as \(h \) approaches 0 gives 4.

So the tangent line has slope 4 and goes through \((3, 4)\). Using the slope-point equation for a line, the tangent line is

\[
y - 4 = 4(x - 3).
\]

This simplifies to \(y = 4x - 8 \).

2. Graph the function \(y = \cos(x + \pi/4) - 3 \). What is its period?

Solution. This function is \(y = \cos(x) \) translated left by \(\pi/4 \) and down by 3. Because it is not scaled, the period of \(y = \cos(x + \pi/4) - 3 \) is the same as that of \(y = \cos(x) \), namely \(2\pi \).