Solve the following problems. Show your work and use correct notation.

1. Let \(\sin(xy) = e^{2x}y \). Find \(\frac{dy}{dx} \) in terms of \(x \) and \(y \).

 \(Solution. \)

 \[
 \frac{d}{dx} \sin(x,y) = \frac{d}{dx} e^{2x}y
 \]

 \[
 \cos(xy)(y + x \frac{dy}{dx}) = 2e^{2x}y + e^{2x} \frac{dy}{dx}
 \]

 \[
 \frac{dy}{dx} \left(x \cos(xy) - e^{2x} \right) = 2ye^{2x} - y \cos(xy)
 \]

 \[
 \frac{dy}{dx} = \frac{2ye^{2x} - y \cos(xy)}{x \cos(xy) - e^{2x}}
 \]

2. Suppose that the differentiable function \(y = f(x) \) has an inverse and that the graph of \(f \) passes through the point \((3,10)\) and has a slope of 7 there. Find the value of \(\frac{df^{-1}}{dx} \) at \(x = 10 \).

 \(Solution. \)

 Observe that \(f(3) = 10, f^{-1}(10) = 3, \) and \(f'(3) = 7 \). Then

 \[
 f^{-1}(10) = \frac{1}{f'(f^{-1}(10))} = \frac{1}{f'(3)} = \frac{1}{7}
 \]