1. Find the absolute minimum of \(f(x) = 2x^2 - 12x + 18 \) on \([2, 6]\) and the \(x\)-value where it occurs.

 Solution. First, \(f'(x) = 4x - 12 \) and so \(f'(x) = 0 \) when \(x = 3 \). Notice that \(f'(x) \) is never undefined.

 To see if this is a minimum, we must evaluate \(f(x) \) at \(x = 3 \) and the endpoints:
 \(f(2) = 8 - 24 + 18 = 2 \), \(f(3) = 18 - 36 + 18 = 0 \), and \(f(6) = 72 - 72 + 18 = 18 \).

 Thus, the minimum is 0 at \(x = 3 \).

2. Find positive numbers \(x \) and \(y \) with \(x + y = 15 \) so that \(x^2 y \) is as large as possible.

 Solution. First, notice that \(y = 15 - x \) and the function to be maximized is

 \[f(x) = x^2(15 - x) = 15x^2 - x^3. \]

 Thus, \(f'(x) = 30x - 3x^2 = 3x(10 - x) \). So the critical numbers are \(x = 0 \) and \(x = 10 \).

 To see where we have an absolute max, we can chart \(f' \). Using \(f'(1) = 3 \cdot 9 > 0 \), we have that \(f \) increases on \((0, 10)\). Using \(f'(11) = 33 \cdot (-1) < 0 \), we have the \(f \) decreases on \((10, +\infty)\). Thus \(f \) has a relative max at \(x = 10 \) and because we are only interested in positive \(x \), this is an absolute max.

 The other way to see that the absolute max is at \(x = 10 \) is to notice that for \(y = 15 - x \) to be positive, \(x \) must be at most 15. Thus, we are looking for the absolute max on the interval \([0, 15]\). Trying the endpoints and the critical numbers, we have \(f(0) = 0 \), \(f(10) = 1500 - 1000 = 500 \), \(f(15) = 0 \). So the absolute max is at \(x = 10 \).

 Either way, the choice of numbers to maximize \(x^2 y \) is \(x = 10 \) and \(y = 15 - 10 = 5 \).