1. Find the derivative of \(h(x) = \ln(\sqrt{e^{5x} + 4x}) \).

Hint: Simplify the function before differentiating.

Solution. This question is similar to questions 8 and 10 on page 260.

First, rewrite \(h(x) \) as

\[
h(x) = \ln\left(\sqrt{e^{5x} + 4x}\right) = \frac{1}{2} \ln(e^{5x} + 4x)
\]

using the property \(\ln(a^r) = r \ln(a) \).

Using the rule for the derivative of \(\ln(f(x)) \) and then the rule for the derivative of \(e^{f(x)} \), we get

\[
h'(x) = \frac{1}{2} \cdot \frac{e^{5x} + 4}{(e^{5x} + 4x)^{1/2}}
\]

If you don’t simplify the function first, then using the rule of the derivative of \(\ln(f(x)) \) and then the chain rule, and then the rule for the derivative of \(e^{f(x)} \), we get

\[
h'(x) = \frac{1}{2} \cdot \frac{e^{5x} + 4}{(e^{5x} + 4x)^{1/2}} \cdot (e^{5x} + 4)
\]

\[
= \frac{5e^{5x} + 4}{2(e^{5x} + 4x)^{1/2} \cdot (e^{5x} + 4x)^{1/2}}
\]

\[
= \frac{5e^{5x} + 4}{2(e^{5x} + 4x)}.
\]

2. For the function \(f(x) = x^3 + 6x^2 - 36x + 2 \), find its critical numbers, the open intervals where it is increasing, and the open intervals where it is decreasing.

Solution. The derivative of \(f(x) \) is \(f'(x) = 3x^2 + 12x - 36 = 3(x^2 + 4x - 12) = 3(x + 6)(x - 2) \). Thus, the critical numbers of \(f(x) \) are \(-6\) and \(2\).

By drawing the number line and choosing points in each of the intervals \((-\infty, -6)\), \((-6, 2)\) and \((2, +\infty)\), we can see if the function is increasing or decreasing.

For \((-\infty, -6)\), we pick \(x = -7 \) and get \(f'(-7) = 3(-7+6)(-7-2) = 3(-1)(-9) > 0 \). For \((-6, 2)\), we pick \(x = 0 \) and get \(f'(0) = 3(6)(-2) < 0 \). For \((2, +\infty)\), we pick \(x = 3 \) and \(f'(4) = 3(3+5)(3-2) = 3 \cdot 8 \cdot 1 > 0 \).

By the test for increasing/decreasing, \(f(x) \) is increasing on \((-\infty, -6)\) and \((2, +\infty)\), while it is decreasing on \((-6, 2)\).