1. Find the derivative of \(f(x) = (e^x - e^{-x^2})x^3 \)

 Solution. Using the product rule (see page 229 of the text), we have

 \[
 f'(x) = \frac{d}{dx}(e^x - e^{-x^2})x^3 + (e^x - e^{-x^2})(x^3)
 = (e^x e^{-x^2}(-2x))x^3 + (e^x - e^{-x^2})e^{-x^2}(3x^2)
 = (e^x + 2xe^{-x^2})x^3 + 3x^2(e^x - e^{-x^2})
 = x^2[(e^x + 2xe^{-x^2})x + 3(e^x - e^{-x^2})]
 \]

2. Solve \(3e^{4a+1} = 12 \) for \(a \).

 Solution. First, we have

 \[
 e^{4a+1} = \frac{12}{3} = 4
 \]

 and next, we apply \(\ln \) to both sides to get

 \[
 \ln(e^{4a+1}) = \ln 4
 \]

 \[
 4a + 1 = \ln 4
 \]

 \[
 4a = (\ln 4) - 1
 \]

 \[
 a = \frac{(\ln 4) - 1}{4}.
 \]

 Thus, \(a = ((\ln 4) - 1)/4 \).