1. Find the average rate of change of \(y = \sqrt{2x-1} \) between \(x = 1 \) and \(x = 5 \).

 Solution. The average rate of change of \(y = f(x) \) between \(x = a \) and \(x = b \) is
 \[
 \frac{f(b) - f(a)}{b - a}
 \]
 and so we have
 \[
 \frac{\sqrt{2 \cdot 5 - 1} - \sqrt{2 \cdot 1 - 1}}{5 - 1} = \frac{\sqrt{9} - \sqrt{1}}{4} = \frac{2}{4} = \frac{1}{2}
 \]
 So the average rate of change is \(\frac{1}{2} \).

2. Sketch the graph of \(y = \frac{1 - 2x}{5x - 20} \) including \(x \) and \(y \) intercepts and horizontal and vertical asymptotes.

 Solution. First, we observe that \(5x - 20 = 0 \) exactly when \(x = 4 \), and when \(x = 4 \), the numerator, \(1 - 2x \), is \(-7 \neq 0 \), so there is a vertical asymptote at \(x = 4 \).
 Next,
 \[
 \lim_{x \to \infty} \frac{1 - 2x}{5x - 20} = \lim_{x \to \infty} \frac{1/x - 2}{5 - 20/x} = \frac{-2}{5}
 \]
 so there is one horizontal asymptote, at \(y = -2/5 \).
 To find the \(y \)-intercept, we let \(x = 0 \), to get \(y = 1/-20 \) and to find the \(x \)-intercept, we set \(y = 0 \), that is, solve
 \[
 0 = \frac{1 - 2x}{5x - 20}, \quad 0 = 1 - 2x, \quad 2x = 1,
 \]
 which gives \(x = 1/2 \).