Math 871–872 Qualifying Exam
June 2011

Solve three problems from Section A and three more from Section B; you may work on any number of the problems, but indicate which six you want graded. When in doubt about the wording of a problem, ask for clarification. Do not interpret a problem in such a way that it becomes trivial. **Justify your answers.**

Section A:

1. Prove that if \(f : X \to Y \) is a continuous map between topological spaces and \(C \) is a compact subset of \(X \), then \(f(C) \) is a compact subset of \(Y \).

2. Suppose \(f : X \to Y \) is a quotient map. Prove that if \(Y \) is connected and \(f^{-1}(\{y\}) \) is a connected subspace of \(X \) for all \(y \in Y \), then \(X \) is connected.

3. Prove that every metrizable space is normal Hausdorff (aka \(T_4 \)).

4. Suppose \(A, B \) are disjoint, compact subspaces of the Hausdorff topological space \(X \). Prove there are open subsets \(U, V \) of \(X \) such that \(A \subseteq U, B \subseteq V \) and \(U \cap V = \emptyset \).

Section B:

5. Let \(X \) be the space obtained by deleting three distinct points from \(\mathbb{R}^2 \). Compute \(\pi_1(X) \).

6. View \(S^3 \) as the set of unit vectors in \(\mathbb{R}^4 \), and consider the equivalence relation on them induced by \(u \sim v \) if \(A \cdot u = v \), where \(A \) is the matrix

\[
\begin{pmatrix}
0 & 1 & 0 & 0 \\
-1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & -1 & 0
\end{pmatrix}
\]

Compute the fundamental group of the quotient space \(S^3/\sim \).

7. (i) Describe a way of identifying pairs of faces of \(\Delta^3 \) (the standard three simplex) to produce a \(\Delta \) complex structure on \(S^3 \) having a single 3 simplex.

(ii) Write down the chain complex corresponding to the \(\Delta \)-complex in (i). Be sure to include the differentials of the complex, but you do **not** need to compute the homology.

8. Let \(X \) be the space obtained from the sphere \(S^2 \) by joining the North and South poles together with a straight line segment.

(i) Describe a structure of a CW complex on \(X \).

(ii) Compute the homology of \(X \) using cellular homology, with decomposition from (i).

1