WORK EXACTLY 8 PROBLEMS. Each question carries equal weight.

All graphs we consider are simple - that is they have no loops or multiple edges.

1. (a) Show that if a graph is not connected, then its complement is connected.
 (b) A graph G has a proper edge coloring with k colors if no two edges of the same color meet at a common vertex. Show that if G is a regular graph with degree 3, where G is hamiltonian, then G has a proper edge coloring with three colors.

2. (a) Define the term “maximal planar graph.”
 (b) Prove that if G is a maximal planar graph with $p \geq 3$ vertices and q edges, then $q \leq 3p - 6$.
 (c) Prove that there exists only one 4-regular maximal planar graph.

3. (a) State and prove a necessary and sufficient condition for a connected graph G to be Eulerian in terms of its degrees.
 (b) By finding an Euler circuit in a suitably defined directed graph, construct a circular binary sequence S such that each binary word of length 4 appears exactly once as one moves along the sequence S.

4. The cycle double cover conjecture asserts that if G is a connected, bridgeless graph then there exists a multiset $C = \{C_1, C_2, \ldots, C_m\}$ of cycles of G such that every edge of G is in exactly two cycles from C. [Such a multiset is called a cycle double cover of G.] Prove that no graph with a bridge has a cycle double cover. Prove that every planar bridgeless graph has a cycle double cover.

5. Solve the following recurrence relation: $f(n) = 2f(n - 1) + f(n - 2) - 2f(n - 3)$ for $n \geq 3$ where $f(0) = 1, f(1) = 2, f(2) = 0$.

6. A family \mathcal{F} of subsets of X is intersecting if $A, B \in \mathcal{F} \Rightarrow A \cap B \neq \emptyset$.
 (a) Prove that an intersecting family \mathcal{F} of subsets of $X = \{1, \ldots, n\}$ satisfies $|\mathcal{F}| \leq 2^{n-1}$.
 (b) Prove that any intersecting family \mathcal{F} of $X = \{1, \ldots, n\}$ can be extended to an intersecting family of size 2^{n-1}.

7. Give combinatorial proofs that $a)$ $D_n = (n - 1)D_{n-1} + (n - 1)D_{n-2}$ and $b)$ $S(n,k) = kS(n - 1, k) + S(n - 1, k - 1)$, where D_n is the number of derangements of $\{1, 2, \ldots, n\}$ and $S(n,k)$ is the number of partitions of $\{1, 2, \ldots, n\}$ into k non-empty subsets.

8. Determine the number of ways of selecting r distinct integers out of the first n positive integers such that the selection does not include 2 consecutive integers.

9. Let $B = \{B_1, B_2, \ldots, B_b\}$ be a family of subsets (called blocks) of a v-set $X = \{x_1, x_2, \ldots, x_v\}$. Further, assume that each unordered pair $\{x_j, x_m\}$, $1 \leq j < m \leq v$, occurs in exactly $\lambda > 0$ blocks. Prove that if $\lambda < |B_i| < v$, for $1 \leq i \leq v$, then $b \geq v$. (Hint: Use an incidence matrix and determinant.)

10. An r by n Latin rectangle is an r by n matrix where each element from an n-set S occurs exactly once in each row and at most once in each column. Prove that an r by n Latin rectangle can be extended to an $(r + 1)$ by n Latin rectangle if $r < n$.