(1) Define \(\alpha : [-1, 1] \to \mathbb{R} \) by
\[
\alpha(x) := \begin{cases}
-1, & x \in [-1, 0]; \\
1, & x \in (0, 1].
\end{cases}
\]
Let \(f : [-1, 1] \to \mathbb{R} \) be a function that is uniformly bounded on \([-1, 1]\) and continuous at \(x = 0 \), but not necessarily continuous for \(x \neq 0 \). Prove that \(f \) is Riemann-Stieltjes integrable with respect to \(\alpha \) over \([-1, 1]\) and that
\[
\int_{-1}^{1} f(x) \, d\alpha(x) = 2f(0).
\]

(2) (a) State the Weierstrass approximation theorem.
(b) Let \([a, b] \subset \mathbb{R}\) be given. Suppose that \(f : [a, b] \to \mathbb{R} \) is continuous and that
\[
\int_{a}^{b} f(x)x^n \, dx = 0 \quad \text{for each } n = 0, 1, 2, 3, \ldots.
\]
Prove that \(f(x) = 0 \) for all \(x \in [a, b] \).

(3) Suppose that \(\{f_n\}_{n=1}^{\infty} \) is a sequence of continuous functions \(f_n : [0, 1] \to \mathbb{R} \) with the following property: there are numbers \(0 < \lambda \leq \Lambda \) such that for all integers \(n > 0 \)
\[
\lambda x^n \leq f_n(x) \leq \Lambda x^n \quad \text{for each } x \in [0, 1].
\]
(a) Prove that the series \(\sum_{n=1}^{\infty} f_n(x)(1-x) \) converges pointwise but not uniformly on \([0, 1]\).
(b) Prove that the series \(\sum_{n=1}^{\infty} (-1)^n f_n(x)(1-x) \) converges uniformly on \([0, 1]\).

(4) Fix \(x_0 \in \mathbb{R} \). Suppose that \(f : \mathbb{R} \to \mathbb{R} \) is infinitely differentiable; i.e. has continuous derivatives on \(\mathbb{R} \) of all orders. Let \(k \in \{0, 1, 2, \ldots\} \) be given.
(a) Provide the formula for \(P_k : \mathbb{R} \to \mathbb{R} \), the \(k \)-th order Taylor polynomial for \(f \) centered at \(x_0 \).
(b) Suppose that \(Q : \mathbb{R} \to \mathbb{R} \) is a polynomial of degree \(k \) satisfying
\[
\lim_{x \to x_0} \frac{f(x) - Q(x)}{(x-x_0)^k} = 0.
\]
Prove that \(Q = P_k \).

(5) Let \((X, \rho)\) be a metric space.
(a) Suppose that \(\{x_n\}_{n=1}^{\infty} \) and \(\{y_n\}_{n=1}^{\infty} \) are sequences from \(X \) such that \(\lim_{n \to \infty} x_n = x_0 \) and \(\lim_{n \to \infty} y_n = y_0 \) for some \(x_0, y_0 \in X \). Argue that
\[
\lim_{n \to \infty} \rho(x_n, y_n) = \rho(x_0, y_0).
\]
(For this part do not use, without proof, the fact that \(\rho \) is continuous.)
(b) Under the assumption that \((X, \rho)\) is compact, verify that there exist \(a, b \in X \) such that
\[
\rho(a, b) = \sup \{\rho(x, y) : x, y \in X\}.
\]
(For this part you may assume, without proof, that \(\rho \) is continuous.)

(6) (a) Let \(\{a_n\}_{n=1}^{\infty} \) be a bounded sequence from \(\mathbb{R} \). State the definitions of \(\limsup_{n \to \infty} a_n \) and \(\liminf_{n \to \infty} a_n \).
(b) Let \(\{a_n\}_{n=1}^{\infty} \) be an enumeration of the rational numbers in \((0, 1)\). Compute, with justification, the numerical values of \(\limsup_{n \to \infty} a_n \) and \(\liminf_{n \to \infty} a_n \).