(1) Let \(f(x) = \frac{x^2}{1-x^2}, \ x \in (0, 1) \).
 a) By using the \(\epsilon-\delta \) definition of the limit only, prove that \(f \) is continuous on \((0, 1)\).
 b) Is \(f \) uniformly continuous on \((0, 1)\)? Prove your answer.

(2) Let \((X, d)\) and \((Y, \rho)\) be metric spaces.
 a) Prove: If \((X, d)\) is an unbounded and connected metric space, then for every \(x_0 \in X \) and every \(r > 0 \) the set \(\{ x \in X : d(x, x_0) = r \} \) is nonempty.
 b) Let \(f, g : X \to Y \) be continuous functions, and \(E \) is dense subset of \(X \). Prove that \(f(E) \) is dense in \(Y = f(X) \); and if \(g(x) = f(x) \) for all \(x \in E \), then \(g(x) = f(x) \) for all \(x \in X \).

(3) a) Let \(\{a_n\}_{n=1}^\infty \) be a sequence of of positive real numbers. Prove that \(\sum_{n=1}^\infty a_n < \infty \) implies that \(\sum_{n=1}^\infty \sqrt{a_na_{n+1}} < \infty \) and that the converse is false.
 b) Let \(\{x_n\}_{n=1}^\infty \) and \(\{y_n\}_{n=1}^\infty \) be bounded sequences in \(\mathbb{R} \). Prove that
 \[\lim_{n \to \infty} (x_n + y_n) \geq \lim_{n \to \infty} x_n + \lim_{n \to \infty} y_n, \]
 and show that the inequality can be strict.

(4) a) Let \(\{f_n\}_{n=1}^\infty \) be a sequence of real-valued continuous functions such that \(f_n \to f \) uniformly on \([0, 1]\). Prove that \(\lim_{n \to \infty} f_n(x_n) = f(x) \); whenever \(x_n, x \in [0, 1] \) satisfying \(x_n \to x \), as \(n \to \infty \).
 b) Prove that the series: \(x^2 + \frac{x^2}{1+x^2} + \frac{x^2}{(1+x^2)^2} + \frac{x^2}{(1+x^2)^3} + \frac{x^2}{(1+x^2)^4} + \cdots \) converges uniformly on \([a, \infty)\) for every \(a > 0 \); but not uniformly on \([0, b]\) for any \(b > 0 \).

(5) a) Let \(f \) be a bounded real-valued function on \([-1, 1]\) and \(\alpha(x) = 0 \) if \(x \leq 0 \), \(\alpha(x) = 1 \) if \(x > 0 \). Prove that:
 \(f \in \mathcal{R}(\alpha)[-1, 1] \) (i.e., \(f \) is Riemann integrable with respect to \(\alpha \) on \([-1, 1]\)) if and only if \(f \) is right continuous at \(x = 0 \).
 b) Let \(\phi \) be a real-valued function defined on \([0, 1]\) such that \(\phi, \phi' \) and \(\phi'' \) are continuous on \([0, 1]\). Prove that
 \[\int_0^1 \cos x \frac{x\phi'(x) - \phi(x) + \phi(0)}{x^2} \, dx < \frac{3}{2} \|\phi''\|_\infty, \]
 where \(\|\phi''\|_\infty := \sup_{x \in [0, 1]} |\phi''(x)| \). (Note, the constant \(\frac{3}{2} \) in the inequality may not be the smallest possible constant).

(6) Let \(\{f_n\}_{n=1}^\infty \) be a sequence of real-valued continuous functions defined on \([0, 1]\) such that \(\int_0^1 |f_n(y)| \, dy \leq 3 \), for all \(n \in \mathbb{N} \). Define \(g_n : [0, 1] \to \mathbb{R} \) by:
 \[g_n(x) = \int_0^1 \sqrt{x + y} \, f_n(y) \, dy. \]
 Prove that \(\{g_n\}_{n=1}^\infty \) contains a subsequence that converges uniformly on \([0, 1]\).

Masters & Ph.D. Qualifying Exam

Analysis: Math 825/826

June 1, 2009, 2:00-6:00 p.m., Avery Hall 110

- Work 5 complete question out of 6.
- Each problem is worth 20 points.
- Write on one side of the paper only and hand your work in order.
- Do not interpret a problem in such a way that it becomes trivial.