(1) (a) Use the definition of derivative to prove that if f and g are differentiable at a point x, then $f \cdot g$ is differentiable at x.

(b) Use the definition of the Riemann integral to prove that if f is bounded on $[a, b]$ and is continuous everywhere except for finitely many points in (a, b), then f is Riemann integrable on $[a, b]$.

(Note: no points will be given for citing direct references to both results.)

(2) (a) Give an ϵ-δ proof that the function $f(x) = \frac{x + 2}{x^2 - x}$ is continuous on the open interval $(0, 1)$.

(b) Does the improper Riemann integral $\int_0^1 \frac{\sin x}{x^{3/2}} \, dx$ exist? Prove your assertion.

(3) (a) Let $(a_n)_{n=1}^\infty$ be a sequence of real numbers such that $\sum_{n=1}^\infty a_n$ converges conditionally. Let p_1, p_2, \ldots denote the positive terms of $\sum_{n=1}^\infty a_n$ in the same order in which they occur; similarly let q_1, q_2, \ldots denote the negative terms of $\sum_{n=1}^\infty a_n$ in the same order in which they occur. Use the definition of convergent series to show that both $\sum_{n=1}^\infty p_n$ and $\sum_{n=1}^\infty q_n$ diverge.

(b) If the series $\sum_{n=0}^\infty a_n$ converges conditionally, show that the radius of convergence of the power series $\sum_{n=0}^\infty a_n x^n$ is 1.

(4) (a) Prove or disprove: The sequence of functions $f_n(x) = x(1-x)^n$ converges uniformly on $[0, 1]$ as $n \to \infty$.

(b) Let $g_n(x) = x^n(1 - x^n)$ and $F := \{g_n : n = 1, 2, \ldots \}$. Is F equicontinuous on $[0, 1]$? Prove your assertion.

(5) (a) Suppose $f \in C[0, 1]$ and $\int_0^1 f(x)x^n \, dx = 0$ for all $n = 99, 100, 101, \ldots$. Show that $f \equiv 0$.

(b) Let $S \subset \mathbb{R}$ be uncountable. Show that there is an $x_0 \in \mathbb{R}$ such that every neighborhood of x_0 has uncountably many points of S.

(6) (a) A function is of bounded variation on $[a, b]$ if there is a number K such that for every partition $a = a_0 < a_1 < \ldots < a_n = b$ of $[a, b]$, $\sum_{j=1}^n |f(a_j) - f(a_{j-1})| \leq K$. Let

$$f(x) = \begin{cases} 0 & \text{if } x = 0 \text{ or if } x \in \mathbb{R} \setminus \mathbb{Q} \\ 1 & \text{if } x \in \mathbb{Q}. \end{cases}$$

Show that f is NOT of bounded variation on $[0, 1]$.

(b) Let

$$g(x) = \begin{cases} 0 & \text{if } x = 0 \text{ or if } x \in [0, 1] \setminus \mathbb{Q} \\ \frac{1}{q} & \text{if } x = \frac{p}{q} \in [0, 1] \cap \mathbb{Q} \text{ in lowest terms}. \end{cases}$$

(To say that $x = \frac{p}{q}$ in lowest terms means that p and q are positive integers with no common factors.) Show that g is continuous at every irrational of $[0, 1]$.