Answer five out of the following seven questions.
If you answer more than five, make clear which questions you want graded.
All questions carry equal weight.

1. Suppose \(g_n(x) \) is a sequence of real-valued functions defined on a set \(S \subseteq \mathbb{R} \). Suppose further that \(0 \leq g_{n+1}(x) \leq g_n(x) \) for all \(n \in \mathbb{N} \) and \(x \in S \) and that \(g_n(x) \to 0 \) uniformly on \(S \). Prove that \(\sum_{n=1}^{\infty} (-1)^n g_n(x) \) converges uniformly on \(S \).

2. (a) Let \(S \) be a set of real numbers. Prove carefully from the definitions that

\[
\sup \{ |x - y| : x, y \in S \} = \sup(S) - \inf(S)
\]

(b) Hence prove that whenever \(f \) is a Riemann integrable function on \([a, b] \) then \(|f| \) is also Riemann integrable on \([a, b] \).

3. Let \(f(x, y) \) be continuous on \([a, b] \times [c, d] \). Prove that the function

\[
g(x) := \int_c^d f(x, y) \, dy
\]

is continuous on \([a, b] \).

4. (a) Define the term

it compact set in a metric space.

(b) Let \((X, \rho) \) be a metric space and let \((x_n) \) be a sequence in \(X \) that converges to \(a \in X \). Prove directly from the definition of compactness that

\[
K := \{a\} \cup \{x_n : n \in \mathbb{N}\}
\]

is compact.

5. Let \(h : \mathbb{R} \to \mathbb{R} \). Show that \(\lim_{t \to a^+} h(t) \) exists if and only if, given any \(\epsilon > 0 \) there is a \(\delta > 0 \) such that \(|f(x) - f(y)| < \epsilon \) for all \(a < x, y < a + \delta \).

6. Suppose that \(f : [0, +\infty) \to \mathbb{R} \) and that

\[
f(0) = 0, f'(0) = 1 \quad \text{and} \quad f''(x) \leq 0 \quad \text{for all} \quad x > 0
\]

(a) Prove that \(f(x) \leq x \) for all \(x \geq 0 \).

(b) Prove that \(f(x)/x \) is decreasing on \([0, +\infty) \).

7. Suppose that a subset \(S \) of a metric space has the property that given any \(a, b \in S \), there is a continuous function \(\gamma : [0, 1] \to S \) such that \(\gamma(0) = a \) and \(\gamma(1) = b \). Prove that \(S \) is connected.