(1) Let \(f : \mathbb{R} \to \mathbb{R} \) be a continuous function on \(\mathbb{R} \). Fix \(c \in \mathbb{R} \), and suppose that \(f \) has the following property: there is an \(L \) such that for each \(\varepsilon > 0 \) there is a \(\delta > 0 \) such that
\[
\left| \frac{f(r) - f(c)}{r - c} - L \right| < \varepsilon \quad \text{whenever} \quad r \in \mathbb{Q} \quad \text{and} \quad 0 < |r - c| < \delta.
\]
Prove that \(f \) is differentiable at \(c \) and that \(f'(c) = L \).

(2) (a) Carefully state the Mean Value Theorem.
(b) Let \(\lambda > 0 \) be given. Show that there is no function \(f : \mathbb{R} \to \mathbb{R} \) that is differentiable at every \(x \in \mathbb{R} \) and such that
\[
f'(x) = \begin{cases}
0, & x < 0 \\
\lambda, & x \geq 0.
\end{cases}
\]

(3) Define \(\alpha, \beta, f : \mathbb{R} \to \mathbb{R} \) by
\[
\alpha(x) := \begin{cases}
-1, & x < 0 \\
4, & x \geq 0;
\end{cases} \quad \beta(x) := \begin{cases}
-1, & x \leq 0 \\
4, & x > 0;
\end{cases} \quad \text{and} \quad f(x) := \begin{cases}
0, & x < 0 \\
1, & x \geq 0;
\end{cases}
\]
(a) Determine whether \(f \) is Riemann-Stieltjes integrable with respect to \(\alpha \) over \([-1, 1]\). If it is, evaluate \(\int_{-1}^{1} f \, d\alpha \).
(b) Determine whether \(f \) is Riemann-Stieltjes integrable with respect to \(\beta \) over \([-1, 1]\). If it is, evaluate \(\int_{-1}^{1} f \, d\beta \).

(4) Let \(\{f_n\}_{n=1}^{\infty} \) be a sequence of \(\mathbb{R} \)-valued functions defined on \(\mathbb{R} \). Suppose that for each \(n \in \mathbb{N} \) and each \(x \in \mathbb{R} \) we have \(0 \leq f_{n+1}(x) \leq f_n(x) \) and that \(f_n \to 0 \) uniformly on \(\mathbb{R} \). Prove that \(\sum_{n=1}^{\infty}(-1)^nf_n(x) \) converges uniformly on \(\mathbb{R} \).

(5) Let \((X, \rho)\) and \((Y, \sigma)\) be metric spaces.
(a) Carefully state the definition of continuity for a mapping \(f : X \to Y \).
(b) Carefully state the definition of compactness for \(X \).
(c) Suppose that \(X \) is compact and that \(f : X \to Y \) is continuous. Prove that \(f(X) \) must be a compact subset of \(Y \).

(6) Suppose that \(\{a_n\}_{n=1}^{\infty} \) is a convergent sequence of real numbers. Suppose that \(M \in \mathbb{R} \) is such that both \(\lim_{n \to \infty} a_n \neq M \) and \(a_n \neq M \) for all \(n \in \mathbb{N} \). Show that there must be a \(d > 0 \) such that \(|a_n - M| > d \) for all \(n \in \mathbb{N} \).