Analysis Qualifier, January 2007

Answer 5 of the following 6 questions. All questions are of equal weight. Note that in problems 2, 4 and 6, part (a) is independent of part (b).

1. Let \(f(x) = \int_1^x \frac{1}{t} \, dt \) for \(x > 0 \).

 (a) Use an \(\epsilon-\delta \) proof to show that \(f \) is continuous on \((0, \infty)\).

 (b) Use an \(\epsilon-\delta \) proof to show that \(f \) is differentiable on \((0, \infty)\).

2. (a) Let \(f : [1, +\infty) \rightarrow [0, +\infty) \) be piecewise continuous and nonincreasing. Show that the series \(\sum_{n=1}^{\infty} f(n) \) converges if and only if the improper integral \(\int_1^{\infty} f(x) \, dx \) converges.

 (b) Let \(g(t) = \sum_{n=1}^{\infty} \sum_{j=1}^{n} \frac{t^j}{n^2} \).

 i. For what real values of \(t \) does this series converge absolutely?

 ii. For what real values of \(t \) does this series converge conditionally?

3. (a) Let \(B \) be a compact subset of \(\mathbb{R} \) and let \(f : B \rightarrow \mathbb{R} \) be continuous. Show that there exists a point \(b \in B \) such that \(f(x) \leq f(b) \) for all \(x \in B \) (i.e. \(f \) attains its maximum value).

 (b) Let \(f \) be a positive continuous function defined on \(\mathbb{R} \) such that \(\lim_{|x| \rightarrow \infty} f(x) = 0 \). Show that \(f \) attains its maximum value.

4. (a) Let \(f : [0, 1] \rightarrow [0, 1] \) be defined by

\[
 f(t) = \begin{cases}
 0 & \text{if } x \text{ is irrational} \\
 1 & \text{if } x = 0 \\
 \frac{1}{q} & \text{if } x = \frac{p}{q} \text{ in reduced form, where } p \text{ and } q \text{ are positive integers}
 \end{cases}
\]

 Prove that \(f \) is Riemann integrable on \([0, 1]\) and that \(\int_0^1 f(x) \, dx = 0 \).

 (b) For \(n = 1, 2, 3, \ldots \) and \(x \in [0, 1] \), let

\[
 g_n(x) = \frac{x^2}{x^2 + (1 - nx)^2}.
\]

 Prove or disprove: The family of functions \(\mathcal{G} = \{ g_n : n = 1, 2, 3, \ldots \} \) is equicontinuous on \([0, 1]\).
5. Let E be a compact subset of \mathbb{R}.

(a) Let $g : E \to \mathbb{R}$ be a continuous function such that $g(x) \neq 0$ for all $x \in E$. Show that there exists $c > 0$ such that $|g(x)| \geq c$ for all $x \in E$.

(b) Suppose that a sequence of functions $\{f_n\}_{n=1}^{\infty}$ converges uniformly on E to a bounded function f, and that a sequence of functions $\{g_n\}_{n=1}^{\infty}$ converges uniformly to a continuous function g, where $g(x) \neq 0$ for all $x \in E$. Prove that the sequence of functions $\{f_n/g_n\}_{n=1}^{\infty}$ is defined everywhere on E for large n and converges uniformly on E to f/g.

6. (a) Let f be a function of bounded variation on $[a, b]$. Furthermore, assume that for some $c > 0$, $|f(x)| \geq c$ on $[a, b]$. Show that $g(x) = 1/f(x)$ is of bounded variation on $[a, b]$.

(b) Prove that every open set $A \subseteq \mathbb{R}$ can be written as a finite or countable union of disjoint open intervals (a_j, b_j), where at most one $a_j = -\infty$ and at most one $b_j = \infty$.