Answer 5 of the following 7 questions. All have equal weight.

1. Let the power series \(\sum_{n=0}^{\infty} a_n x^n \) and \(\sum_{n=0}^{\infty} b_n x^n \) have radii of convergence \(R_1 \) and \(R_2 \) respectively.

 (a) If \(R_1 \neq R_2 \), prove that the radius of convergence, \(R \), of the power series \(\sum_{n=0}^{\infty} (a_n + b_n) x^n \) is \(\min\{R_1, R_2\} \). What can be said about \(R \) when \(R_1 = R_2 \)?

 (b) Prove that the radius of convergence, \(R \), of the power series \(\sum_{n=0}^{\infty} a_n b_n x^n \) satisfies \(R \geq R_1 R_2 \). Show by means of an example that the inequality can be strict.

2. (a) Give a careful \(\epsilon - \delta \) proof that \(g(x) = \sqrt{x} \) is continuous on \([0, \infty)\).

 (b) Assume that \(f \) is differentiable at \(a \). Evaluate

 \[
 \lim_{x \to a} \frac{a^n f(x) - x^n f(a)}{x - a} \quad (n \in \mathbb{N})
 \]

3. (a) Let \(S \) be the set of all sequences \((q_1, q_2, \ldots)\) of rational numbers which converge to zero. Is \(S \) countable or uncountable?

 (b) Let \((X, d)\) be a compact metric space and let \(f : X \to X \) be continuous and onto. Let \(g : X \to X \) and suppose \(g \circ f \) is continuous. Prove that \(g \) must be continuous.

4. (a) Let

 \[
 f_n(x) = \begin{cases}
 \frac{1}{n} & \text{if } \frac{1}{n+1} < x \leq \frac{1}{n} \\
 0 & \text{otherwise}
 \end{cases}
 \]

 Show that \(\sum_{n=1}^{\infty} f_n \) does not satisfy the Weierstrass \(M \)-Test but that it nevertheless converges uniformly on \(\mathbb{R} \).

 (b) Suppose that \(f \) is continuous and \(f(x) \geq 0 \) on \([0, 1]\). If \(f(0) > 0 \), prove that \(\int_{0}^{1} f(x) \, dx > 0 \).

5. Let \(a_{m,n} \geq 0 \) \((m, n \in \mathbb{N})\) and suppose that the partial sums

 \[
 \sum_{m=1}^{M} \sum_{n=1}^{N} a_{mn}
 \]

 are bounded above. Prove carefully that \(\sum_{m=1}^{\infty} (\sum_{n=1}^{\infty} a_{mn}) \) and \(\sum_{n=1}^{\infty} (\sum_{m=1}^{\infty} a_{mn}) \) exist and are equal.

6. Suppose \(f' \) exists and is increasing on \((0, \infty)\) and that \(f \) is continuous on \([0, \infty)\) with \(f(0) = 0 \). Show that \(g(x) = f(x)/x \) is increasing on \((0, \infty)\).

7. (a) Let \(f \) be continuous on \([0, 1]\) and \(f(0) = f(1) = 0 \). Show that there is a sequence of polynomials \(p_n \) such that \(x(1-x)p_n(x) \) converges to \(f \) uniformly.

 (b) Let \(f \) be uniformly continuous on a bounded set \(E \subseteq \mathbb{R} \) and let \(a \in E \). Prove that \(\lim_{x \to a} f(x) \) exists.