(1) (a) Let \(\{a_k\} \) be a sequence of real numbers such that the series \(\sum_{k=1}^{\infty} a_k \) is convergent and that the series \(\sum_{k=1}^{\infty} a_k^2 \) is divergent. Prove that the series \(\sum_{k=1}^{\infty} a_k \) does not converge absolutely.

(b) Consider the series \(\sum_{k=1}^{\infty} \frac{1}{1+z^k} \), where \(z \in \mathbb{C} \). Prove that the series diverges for all \(|z| \leq 1 \); and the series converges absolutely for all \(|z| > 1 \).

(2) Let \((X, d)\) be a compact metric space and \(f: X \to \mathbb{R} \) is a continuous function on \(X \).

(a) Prove that \(f(X) \) is compact in \(\mathbb{R} \).

(b) Prove that there exists a point \(a \in X \) such that \(f(a) = \sup f(X) \).

(3) (a) Assume that \(\sum_{k=1}^{\infty} a_k \) is a convergent series of nonnegative real numbers. Prove that the series \(\sum_{k=1}^{\infty} a_k^x \) converges uniformly on \([1, \infty)\).

(b) Prove: the series \(\sum_{k=0}^{\infty} \frac{x^3}{(1+x^3)^k} \) converges uniformly on \([a, b]\) for every \(0 < a < b \); but the convergence is not uniform on \([0, b]\) for any \(b > 0 \).

(4) Let \(f \) be given by: \(f(x) = \sum_{n=1}^{\infty} \frac{|x|}{x^2 + n^2} \).

(a) Show that \(f \) is well defined on \(\mathbb{R} \).

(b) Prove that \(f \) is continuous on \(\mathbb{R} \), but \(f \) is not differentiable at 0.
(5) (a) Let \(f : [a, b] \to \mathbb{R} \) be continuous on \([a, b]\). Prove that there exists \(c \in (a, b) \) such that
\[
\frac{1}{b - a} \int_a^b f(x) \, dx = f(c).
\]
(b) Let \(f : [0, 1] \to \mathbb{R} \) be a continuous function on \([0, 1]\) with \(f(0) = 0 \). Prove that there exists a sequence of polynomials \(\{Q_n\} \) such that \(xQ_n(x) \to f(x) \) uniformly on \([0, 1]\).

(6) (a) Let \(\alpha \) be monotone increasing function on \([a, b]\) and assume that \(\alpha \) is continuous at some point \(s \in [a, b] \). Prove that if \(f(s) = 1 \) and \(f(x) = 0 \) for \(x \neq s \), then \(f \in R(\alpha)[a, b] \) (i.e., \(f \) is Riemann integrable with respect to \(\alpha \) on \([a, b]\)) and that
\[
\int_a^b f \, d\alpha = 0.
\]
(b) Let \(\alpha_n \) be a sequence of monotone increasing functions on \([a, b]\) and assume that \(f \) is a bounded function on \([a, b]\) such that \(f \in R(\alpha_n)[a, b] \) for every \(n \in \mathbb{N} \). Prove that: if \(\lim_{n \to \infty} \alpha_n(x) = 0 \) for each \(x \in [a, b] \), then \(\int_a^b f \, d\alpha_n \to 0 \), as \(n \to \infty \).

(7) (a) Let \(f_n : [a, b] \to \mathbb{R}, n = 1, 2, \ldots \) be a uniformly bounded sequence on \([a, b]\), and assume that \(f_n \in R[a, b] \). Let \(F_n(x) = \int_a^x f_n(t) \, dt, x \in [a, b] \). Prove that there exists a subsequence \(\{F_{n_k}\} \) of \(\{F_n\} \) such that \(\{F_{n_k}\} \) converges uniformly on \([a, b]\).
(b) Let \(f : [a, b] \to \mathbb{R} \) be a differentiable function on \([a, b]\). Call \(f \) uniformly differentiable on \([a, b]\) if, for every \(\epsilon > 0 \), there exists a \(\delta > 0 \), such that
\[
\left| \frac{f(t) - f(x)}{t - x} - f'(x) \right| < \epsilon
\]
for all \(x, t \in [a, b] \) with \(0 < |t - x| < \delta \). Prove that if \(f' \) is continuous on \([a, b]\) then \(f \) is uniformly differentiable on \([a, b]\).