Section I. Groups

1. Recall that the centralizer of a subgroup H in a group G is

 \[C_G(H) = \{ g \in G \mid gh = hg \text{ for all } h \in H \}. \]

 (a) Prove that if H is normal in G, then $C_G(H)$ is normal in G.

 (b) Prove that if H is normal in G, then $G/C_G(H)$ is isomorphic to a subgroup of $\text{Aut}(H)$ (the group of automorphisms of H).

2. (a) Suppose H is a subgroup of a group G and $[G : H] = 7$. Prove G contains a normal subgroup N such that $N \subset H$ and $[G : N] \leq 7!$.

 (b) Prove $7!$ is the best possible bound for the previous part — i.e., prove there is a group G and a subgroup H with $[G : H] = 7$ such that for every normal subgroup N of G with $N \subset H$, we have $[G : N] \geq 7!$.

3. Suppose G is a simple group of order $168 = 2^3 \cdot 3 \cdot 7$. (Yes, there is such a group.)

 (a) How many elements of order 7 does G have?

 (b) Show that G has at least 14 elements of order 3.

Section II. Linear Algebra and Modules

4. Let $A = \begin{bmatrix} 3 & 0 & 0 & 0 \\ 1 & 3 & 0 & 0 \\ 1 & 0 & 3 & 0 \\ 0 & 2 & 1 & 3 \end{bmatrix}$, with entries in \mathbb{C}.

 (a) Find the Jordan canonical form of A.

 (b) Let $B = \begin{bmatrix} 0 & -9 & 0 & 0 \\ 1 & 6 & 0 & 0 \\ 0 & 0 & 0 & -9 \\ 0 & 0 & 1 & 6 \end{bmatrix}$, with entries in \mathbb{C}. Is A similar to B?

5. Let R be a ring with identity and let M be a left R-module. Recall that the annihilator of M in R is

 \[\text{ann}_R(M) = \{ r \in R \mid rm = 0 \text{ for all } m \in M \}. \]

 (a) Prove that $\text{ann}_R(M)$ is a 2-sided ideal of R.

 (b) Suppose M is an abelian group (i.e., a \mathbb{Z}-module) such that $|M| = 400$ and $\text{ann}_{\mathbb{Z}}(M)$ is the ideal generated by 20. How many possibilities, up to isomorphism, are there for M?

6. Let F be a field and V a vector space (not necessarily finite-dimensional) over F. Prove that every linearly independent subset of V is contained in a basis for V.
Section III. Rings, Fields and Galois Theory

7. Let \(R \) be an integral domain with field of fractions \(Q \). Let \(P \) be a prime ideal of \(R \) and let

\[
S = \left\{ \frac{r}{d} \in Q \mid d \notin P \right\}.
\]

(a) Show that \(S \) is a subring of \(Q \).
(b) Show that

\[
I = \left\{ \frac{p}{d} \mid p \in P, d \notin P \right\}
\]

is a prime ideal of \(S \).

8. Prove \(\mathbb{Z}[2i] = \{ a + 2bi \mid a \text{ and } b \text{ are integers} \} \) is not a PID. \textit{Hint:} One method is to use (with proof) the fact that \(2 + 2i \) is irreducible in this ring.

9. Consider \(f(x) = x^6 + 3 \in \mathbb{Q}[x] \).

(a) Let \(\alpha \) be a root of \(f(x) \) and prove \(\mathbb{Q}(\alpha) \) is Galois over \(\mathbb{Q} \). (Hint: First show \(\alpha^3 + 1 \) is a primitive 6-th root of unity.)
(b) Find the Galois group of \(\mathbb{Q}(\alpha)/\mathbb{Q} \).