Section I: Groups and Geometry

1. Let G be a group (not necessarily finite). A subgroup S of G is said to be characteristic provided $\sigma(S) \subseteq S$ for every $\sigma \in \text{Aut}(G)$.
 (a) Prove that every characteristic subgroup of G is a normal subgroup of G.
 (b) Prove that the center of a group G is a characteristic subgroup of G.
 (c) Prove that if S is a characteristic subgroup of G then $\sigma(S) = S$ for every $\sigma \in \text{Aut}(G)$.
 (d) Let p be a prime and let P be the subgroup of G generated by all elements of G whose order is a power of p. Prove that P is a characteristic subgroup of G.

2. Group actions
 (a) Let G be a group of order 15 acting on a set with 7 elements. Prove that there exists at least one fixed point.
 (b) Give an example of an action of C_{15} on a set with 8 elements with no fixed points. Justify.

3. Rigid Motions of the Plane: Let τ be a translation of the plane, and let ρ be a non-trivial rotation about some point in the plane.
 (a) Prove that $\rho \tau$ has a fixed point. (τ acts first.)
 (b) Prove that $\tau \rho$ has a fixed point.
 Give direct and rigorous proofs, without assuming the classification of symmetries of the plane.

4. Dense subgroups of \mathbb{R}^+.
 (a) Let G be a subgroup of the additive group \mathbb{R} containing arbitrarily small positive real numbers. Prove that G is dense in \mathbb{R}. (That is, given real numbers a and b with $a < b$, prove that there is an element $g \in G$ with $a < g < b$.)
 (b) Prove that $G := \mathbb{Z} + \mathbb{Z}\sqrt{2}$, the additive subgroup of \mathbb{R} generated by 1 and $\sqrt{2}$, is dense in \mathbb{R}. (One approach is to show that G does not have a smallest positive element and to deduce (a) from this fact. Other methods are possible.)
Section II: Rings and Fields

5. Field Extensions
(a) Give an example of a field extension L/F of finite degree having two distinct intermediate fields K_1 and K_2 such that K_1 and K_2 are isomorphic as fields. Justify.
(b) Suppose K_1 and K_2 are two distinct subfields of \mathbb{C} such that $[K_1 : \mathbb{Q}] = [K_2 : \mathbb{Q}] = 2$. Prove that K_1 and K_2 are not isomorphic fields. (You may assume that every quadratic extension of \mathbb{Q} is of the form $\mathbb{Q}(\sqrt{d})$ for some square-free integer $d \neq 1$.)

6. Prove that the polynomial $f(x) := x^5 + 6x^4 + 3x^2 + x + 2$ is irreducible over \mathbb{Q}. (You might find it helpful to reduce modulo 2.)

7. Let K/k be a field extension (not necessarily algebraic).
(a) Let R be a ring with $k \subseteq R \subseteq K$, and assume that every element of R is algebraic over k. Prove that R is a field.
(b) Let E and F be intermediate fields, both of them algebraic over k. Prove that

$$\{ \sum_{i=1}^{n} e_i f_i \mid e_i \in E, f_i \in F, n \in \mathbb{N} \}$$

is the smallest subfield of K containing both E and F.

8. Let R be an integral domain (commutative with identity). Suppose that the polynomial ring $R[x]$ is a principal ideal domain. Prove that R is a field.
Section III: Linear Algebra

9. Similarity
(a) How many similarity classes of 6×6 matrices with characteristic polynomial $(x^2 + 1)^3$ are there over \mathbb{C}? Explain.
(b) How many similarity classes of 6×6 matrices with characteristic polynomial $(x^2 + 1)^3$ are there over \mathbb{Q}? Justify your answer, and give one representative from each class.

10. Recall that the cokernel of an $m \times n$ matrix α over \mathbb{Z} is the abelian group \mathbb{Z}^m/C, where C is the subgroup of \mathbb{Z}^m generated by the columns of α. For each of the following, reduce the matrix to diagonal form by doing integer row and column operations, and express the cokernel as a direct sum of cyclic groups.

(a) $\alpha = \begin{bmatrix} 6 & 4 & 2 \\ 6 & 2 & 4 \end{bmatrix}$.

(b) $\beta = \begin{bmatrix} 6 & 6 \\ 4 & 2 \\ 2 & 4 \end{bmatrix}$.

11. Let A be an $n \times n$ real matrix. Let $\| \cdot \|$ and $\langle \cdot , \cdot \rangle$ denote the usual norm and inner product on \mathbb{R}^n. (Thus, viewing elements of \mathbb{R}^n as column vectors, we have $\langle v, w \rangle = v^t w$ and $\|v\| = \sqrt{\langle v, v \rangle}$.) Prove that the following conditions (various criteria for A to be orthogonal) are equivalent:
(a) $A^t A = I_n$.
(b) $\|A v\| = \|v\|$ for each $v \in \mathbb{R}^n$.
(c) $\langle A v, A w \rangle = \langle v, w \rangle$ for all $v, w \in \mathbb{R}^n$.
(d) The columns of A form an orthonormal basis for \mathbb{R}^n.

12. Let $A = \begin{bmatrix} -1 & -9 & 0 & 0 \\ 1 & 5 & 0 & 0 \\ 2 & 7 & 2 & 0 \\ 4 & 13 & 0 & 2 \end{bmatrix}$.

(a) Show that the characteristic polynomial of A is $(\lambda - 2)^4$.
(b) Find the Jordan canonical form J of A. Justify.
(c) We know there is an invertible matrix P such that $P A P^{-1} = J$. Find either P or P^{-1}. (It’s your choice, but be sure to clarify which one you are finding!)