Throughout the exam, the Lebesgue measure is denoted by m. Let

(1) Let $E \subset [0,1]$ be a Lebesgue measurable set with $m(E) > 0$, and let $0 < \epsilon < 1$ be given.
 a) Prove that there exists an open interval I such that $m(E \cap I) > \epsilon m(I)$.
 b) Assume $A \subset [0,1]$ is a Lebesgue measurable set such that $m(A \cap I) \geq \frac{1}{10} m(I)$ for every open interval $I \subset [0,1]$. Prove that $m(A) = 1$.

(2) Let $g : [0,1] \times [0,1] \to \mathbb{R}$ be given by: $g(x,y) = xy^3$, $(x,y) \in [0,1]^2$. Define: $\mu(E) = m(g^{-1}(E))$, $E \in \mathcal{B}_{\mathbb{R}}$, where m denotes the two dimensional Lebesgue measure on \mathbb{R}^2.
 a) Show that μ is a Borel measure on \mathbb{R}.
 b) Show all details in evaluating the integral $\int_{\mathbb{R}} t^2 \, d\mu(t)$.
 (Hint: first show $\mu(E) = \int_{[0,1]^2} \chi_E \circ g \, d\mathfrak{m}$, for all $E \in \mathcal{B}_{\mathbb{R}}$).

(3) Assume $f : [0,1] \to \mathbb{R}$ is a continuous function. Prove the limit:

$$\lim_{n \to \infty} \int_{[0,1]} f(x^n) \, dm$$

exists and evaluate the limit. Does the limit always exist in \mathbb{R} if we only assume $f \in L^1([0,1], m)$?

(4) Let $f : [0,1] \times [0,1] \to \mathbb{R}$ be $\mathcal{B}_{[0,1]^2}$-measurable such that the partial derivative $\frac{\partial f}{\partial t}(x,t)$ exists for each $(x,t) \in [0,1]^2$, and $M := \sup_{(x,t) \in [0,1]^2} \left| \frac{\partial f}{\partial t}(x,t) \right| < \infty$.
 Prove that $\frac{\partial f}{\partial t}$ is $\mathcal{B}_{[0,1]^2}$-measurable and $\frac{d}{dt} \int_{[0,1]} f(x,t) \, dm(x) = \int_{[0,1]} \frac{\partial f}{\partial t}(x,t) \, dm(x)$.

(5) Let $f_n : [0,1] \to \mathbb{R}$ such that $f, f_n \in L^2([0,1], \mathcal{B}_{[0,1]}, m)$, for every $n \in \mathbb{N}$. Prove or disprove the following statements:
 a) If $f_n \to 0$ a.e. $[0,1]$ then $\|f_n\|_2 \to 0$.
 b) If $f_n \to 0$ in $L^2([0,1], m)$, then $f_n \to 0$ in measure.
 c) If $f_n \to f$ weakly in $L^2([0,1], m)$ and $\|f_n\|_2 \to \|f\|_2$, then $\|f_n - f\|_2 \to 0$.
 d) If $\|f_n - f\|_2 \to 0$, then $\|f_n - f\|_p \to 0$ for every $p \in [1,2]$.

(6) Let $f, g : \mathbb{R} \to \mathbb{R}$ be a Borel measurable functions such that $f, g \in L^1(\mathbb{R}, m)$.
 a) Briefly explain why the mapping $(x,y) \mapsto f(x-y)g(y)$ is $\mathcal{B}_{\mathbb{R}^2}$-measurable.
 b) Define: $(f \ast g)(x) := \int_{\mathbb{R}} f(x-y)g(y) \, dm(y)$. Prove that $f \ast g \in L^1(\mathbb{R}, m)$ and

$$\|f \ast g\|_1 \leq \|f\|_1 \|g\|_1.$$

(7) Let μ and ν be σ-finite positive finite measures on a measurable space (X, \mathcal{M}) with $\nu \ll \mu$.
 Put $\lambda = \mu + \nu$. Prove that $f = \frac{d\nu}{d\lambda}$ exists, $0 \leq f < 1$ μ-a.e., and that $\frac{d\nu}{d\mu} = \frac{1}{1-f} \mu$-a.e.

(8) Let X be a compact Hausdorff topological space with the following property:
 If $E \subseteq X$ is open then its closure \overline{E} is also open. Let $C(X)$ denotes the space of all continuous \mathbb{C}-valued functions on X. Let $f \in C(X)$ and $\epsilon > 0$ be given. Prove that there exist $\lambda_1, \ldots, \lambda_n \in \mathbb{C}, \ E_1, \ldots, E_n \subseteq X$ such that $\chi_{E_j} \in C(X)$ for every j and

$$\sup_{x \in X} \left| f(x) - \sum_{j=1}^n \lambda_j \chi_{E_j}(x) \right| < \epsilon.$$