Real Analysis Comprehensive Examination–Math 921/922
Friday, January 21, 2011, 2:00-6:00 p.m.

- Work 6 out of 8 problems.
- Each problem is worth 20 points.
- Write on one side of the paper only and hand your work in order.
- Throughout the exam, the Lebesgue measure is denoted by \(m \), \(B_\mathbb{R} \) denotes the Borel \(\sigma \)-algebra on \(\mathbb{R} \), and \((X, \mathcal{M}, \mu) \) denotes a general measure space.

1. Let \(E \subset \mathbb{R} \) be a Lebesgue measurable set such that \(m(E) = \infty \). Prove that:
 a) \(E = V \setminus N_1 \), where \(V \) is a \(\mathcal{G}_2 \) set and \(N_1 \) is a null set for \(m \).
 b) \(E = H \cup N_2 \), where \(H \) is an \(\mathcal{F}_\sigma \) set and \(N_2 \) is a null set for \(m \).

2. Let \(\{f_n\} \) and \(f \) be \(\mathcal{M} \)-measurable functions on \((X, \mathcal{M}, \mu) \), \(n \in \mathbb{N} \), such that \(f_n \geq 0 \) and \(f_n \rightarrow f \) in measure. Prove that:
 \[\int_X f \, d\mu \leq \lim \inf_{n \to \infty} \int_X f_n \, d\mu. \]
 (Hint: First show that every subsequence of \(\{f_n\} \) converges to \(f \) in measure.

3. Let \(f : [0, 1] \rightarrow \mathbb{R} \) be a Borel measurable function and let \(g_n(x) = (\cos f(x))^{2n} \), \(x \in [0, 1] \), \(n \in \mathbb{N} \).
 a) Carefully explain why \(g_n \) is Borel measurable for every \(n \in \mathbb{N} \).
 b) Show all technical details in evaluating:
 \[\lim_{n \to \infty} \int_{[0, 1]} g_n(x) \, dm. \]

4. Let \((X, \mathcal{M}, \mu) \) be a finite measure space. Assume that \(f_n, f : X \rightarrow \mathbb{R} \) are \(\mathcal{M} \)-measurable functions such that \(\|f_n\|_2 \) and \(\|f\|_2 \leq 1 \), \(n \in \mathbb{N} \); where as usual, \(\|f\|_2 := \int_X |f|^2 \, d\mu \). Further assume that:
 \[f_n \rightarrow f \text{, } \mu\text{-a.e.} \]
 a) Prove that:
 \[f_n \rightarrow f \text{ in } L^p(X, \mathcal{M}, \mu), \text{ for each } p \in [1, 2). \]
 (Hint: Egoroff’s Theorem).
 b) Provide a counterexample showing that the result in part a) fails if \(p = 2 \).

5. Let \(g \in L^\infty(\mathbb{R}, m) \) and \(p \in [1, \infty) \) be fixed. For \(f \in L^p(\mathbb{R}, m) \), define \(T(f)(x) = g(x)f(x) \).
 Prove that \(T : L^p(\mathbb{R}, m) \rightarrow L^p(\mathbb{R}, m) \) is a bounded linear map and that \(\|T\| = \|g\|_\infty \).
 (Don’t forget to address the case \(p = \infty \).

6. Let \(f \in L^1((0, 1), B_{(0,1)}, m) \) and \(g(x) := \int_{(x, 1)} \frac{1}{y} f(y) \, dm(y), x \in (0, 1) \).
 Prove that:
 \[\int_{(0,1)} g(x) \, dm(x) = \int_{(0,1)} f(y) \, dm(y). \]

7. Let \(\{r_k\}_{k=1}^\infty \) be an enumeration of the rational numbers in \(\mathbb{R} \). Define \(F : \mathbb{R} \rightarrow \mathbb{R} \) by
 \[F(x) := \sum_{n \in \mathbb{N} : r_n \leq x} 2^{-n}. \]
 a) Prove that \(F \) is continuous at each irrational number but discontinuous at each rational number.
 b) Prove that \(F \) is everywhere right-continuous.
 c) Show that \(F' \) exists a.e. and \(F'' = 0 \) a.e.. (Hint: consider the Lebesgue-Stieltjes measure \(\mu_F \).)

8. Let \(f : [a, b] \rightarrow \mathbb{R} \) be a \(C^\infty \)-function on \([a, b] \) (i.e., \(f \) is infinitely differentiable on \([a, b] \)) with the property that:
 for every \(x \in [a, b] \) there exists an integer \(n_x \in \mathbb{N} \) such that \(f^{(n_x)}(x) = 0 \). Here, \(f^{(n_x)} \) stands for the derivative of order \(n_x \). Prove that \(f \) is a polynomial on \([a, b] \).
 (Suggestions: For each \(n \in \mathbb{N} \), put \(A_n = \{ x \in [a, b] : f^{(n)}(x) = 0 \} \) and \(E = \{ x \in [a, b] : \text{ there does not exist a neighborhood of } x \text{ on which } f \text{ is a polynomial} \} \).
 Use a Theorem of Baire on \(E \).