(1) a) Assume that μ is a finite measure. With $q \in (1, \infty)$, let $\{f_k\}_{k=1}^{\infty} \subset L^q(X, \mu)$ and $f \in L^q(X, \mu)$ be given. Suppose also that
\begin{itemize}
 \item $\sup_{k \in \mathbb{N}} \|f_k\|_{L^q} < \infty$ and
 \item $f_k(x) \to f(x)$ for a.e. $x \in X$.
\end{itemize}
Prove that $f_k \to f$ in L^p for each $p \in [1, q)$.
b) Must the result in part a) remain true if μ is only assumed to be a σ-finite measure? (Justify your answer.)

(2) Assume that μ is a finite measure, and let $f : X \to [0, \infty)$ be an \mathcal{M}-measurable function. Suppose that $g : [0, \infty) \to [0, \infty)$ is an increasing function. Prove that
\[\int_X g(f(x)) \, d\mu \geq \int_0^\infty g'(t) \mu(\{x \in X : f(x) > t\}) \, dt. \]
(You may assume without proof that the composition $g \circ f$ is \mathcal{M}-measurable.)

(3) Provide all technical details to evaluate $\lim_{k \to \infty} \int_{[0, \infty)} \frac{\cos(x/k)}{(1 + (x/k))^q} \, dx$.

(4) With m the Lebesgue measure on the Lebesgue measurable sets \mathcal{L} in \mathbb{R}, define the signed measure $\nu : \mathcal{L} \to \mathbb{R}$ by $\nu(E) := \int_E x(x - 1)e^{-x^2} \, dx$.
a) Provide a Hahn decomposition of \mathbb{R} with respect to ν.
b) Provide the Jordan decomposition of ν.
c) Compute $\frac{d\nu}{dm}$.

(5) With m the Lebesgue measure on the Borel sets in \mathbb{R}^n, let $f \in L^1(\mathbb{R}^n, m)$ be given. Recall the definition of the Hardy-Littlewood maximal function of f:
\[Mf(x) := \sup_{r > 0} \frac{1}{m(B(r, x))} \int_{B(r, x)} |f(y)| \, dm(y). \]
a) Prove that, for each $t \geq 0$, the set $\{x \in \mathbb{R}^n : Mf(x) > t\}$ is open.
b) Argue that the function Mf is Borel measurable.

(6) Let X be a nonempty set, and let $\mu^* : \mathcal{P}(X) \to [0, \infty]$ be an outer measure on X. Define $\nu^* : \mathcal{P}(X) \to [0, \infty]$ by
\[\nu^*(E) := \inf \{\mu^*(F) : E \subseteq F \text{ and } F \text{ is } \mu^*\text{-measurable}\}. \]
a) Prove that ν^* is an outer measure on X.
b) Prove that if E is μ^* measurable, then E is ν^*-measurable and $\mu^*(E) = \nu^*(E)$.

(7) Let m be the Lebesgue measure on the Borel sets in \mathbb{R}. Define $\{f_k\}_{k=1}^{\infty} \subset L^\infty(\mathbb{R}, m)$ by $f_k(x) := k\chi_{[0,k]}(x)$. Justify your answers to the following questions.
a) Does $f_k \to 0$ in measure?
b) Does $f_k(x) \to 0$ for a.e. $x \in \mathbb{R}$?
c) Does $f_k \to 0$ in L^1?
d) Does $f_k \to 0$ in L^1?

(8) Let $Y \subseteq X$ be given. Show that $\mathcal{N} := \{E \cap Y : E \in \mathcal{M}\}$ is a σ-algebra of subsets of Y.

Real Analysis Comprehensive Examination—Math 921/922

Thursday, January 21, 2010, 2:00-6:00 p.m., 347 Avery Hall

- Work 6 out of 8 problems.
- Each problem is worth 20 points.
- Write on one side of the paper only and hand your work in order.
- Unless otherwise indicated (X, \mathcal{M}, μ) is a measure space.