Math 901–902 Comprehensive Exam
May 2013

Instructions: Do two problems from each of the three sections, for a total of six problems.
If you have doubts about the wording of a problem, please ask for clarification. In no case should you interpret a problem in such a way that it becomes trivial.

1. Part I: Group and Character Theory

I.1 Let G be a finite group of order $n = |G|$.
 (a) Show that the symmetric group S_n contains a subgroup isomorphic to G.
 (b) Show, by providing an example with justification, that the alternating group A_n need not contain a subgroup isomorphic to G.
 (c) Show that the alternating group A_{2n} contains a subgroup isomorphic to G.
I.2 Find the full character table, with justification, of D_{10}, the dihedral group of order 10 (i.e., the group of symmetries of the pentagon).
I.3 Prove the following two statements are equivalent. (You are not allowed to use the Feit-Thompson Theorem.)
 (a) Every finite group of odd order is solvable.
 (b) Every finite simple non-abelian group has even order.

2. Part II: Field and Galois Theory

II.4 Let $K \subseteq F$ be a Galois extension of fields of degree 60. Prove that if E_1, E_2 are intermediate fields with $[E_i : K] = 15$, for $i = 1, 2$, then there is a $\sigma \in \text{Gal}(F/E)$ such that $\sigma(E_1) = E_2$.
II.5 Let $\mathbb{Q} \subseteq E \subseteq \mathbb{C}$ be field extensions (where \mathbb{Q} denotes the rational numbers and \mathbb{C} denotes the complex numbers). Assume E is an algebraic extension of \mathbb{Q} and that every non-constant polynomial $f \in \mathbb{Q}[x]$ has a root in E. Prove that E is the algebraic closure of \mathbb{Q}. Hint: Apply the Primitive Element Theorem. (You may use the Primitive Element Theorem without proof.)
II.6 Let E be the splitting field of $x^5 - 2$ over \mathbb{Q}. Find, with justification, all intermediate fields $\mathbb{Q} \subseteq L \subseteq E$ such that $[L : \mathbb{Q}] = 5$.
II.7 Recall that a field is perfect if every algebraic extension of it is separable. Prove every algebraic extension of a finite field is perfect.

3. Part III: Ring and Module Theory

III.8 Prove that if R is a semi-simple ring and $a, b \in R$ satisfy $ab = 1$, then $ba = 1$.
III.9 Let R be a commutative ring, let P and Q be finitely generated projective R-modules, and let $f : P \to Q$ be an R-module homomorphism. Show f is an isomorphism if and only if $f \otimes 1 : P \otimes_R R/m \to Q \otimes_R R/m$ is an isomorphism for every maximal ideal m of R.
III.10 Let R be a commutative ring, let $f \in R$, and assume I is an injective R-module. Define $\mu_f : I \to I$ to be the R-module homomorphism given as multiplication by f; i.e., $\mu_f(x) = fx$.
 (a) Prove that if f is a non-zero-divisor, then μ_f is surjective.
 (b) Prove, by way of example, that if we assume only that $f \neq 0$, then μ_f need not be surjective.