Math 901–902 Comprehensive Exam

June 2, 2009, 2–6 pm

Instructions: Do two problems from each of the three sections, for a total of six problems. If you have doubts about the wording of a problem, please ask for clarification. In no case should you interpret a problem in such a way that it becomes trivial.

Part I: Groups and Character Theory

(I.1) Let \(G \) be a group of order 21.

(a) Determine all possible values of \(n \), where \(n \) is the number of conjugacy classes of \(G \).
 (i.e., for each positive integer \(n \), determine whether or not there is a group of order 21 having exactly \(n \) conjugacy classes.)

(b) Determine the possible decompositions of the group ring \(\mathbb{C}[G] \) as a product of matrix rings. (i.e., find all possible products \(\Pi_{i=1}^r \mathbb{M}_{n_i}(D_i) \) which are isomorphic as rings to \(\mathbb{C}[G] \) for some group \(G \) of order 21, where \(\mathbb{C} \) is the field of complex numbers, each \(D_i \) is a division ring, and \(\mathbb{M}_{n_i}(D_i) \) is the ring of \(n_i \times n_i \) matrices with entries in \(D_i \).)

(I.2) For this problem you may assume that any finite group having a solvable quotient by a solvable normal subgroup is solvable. You may assume Sylow’s Theorems. You may assume that if the order of a finite group \(G \) is the product of at most three (possibly non-distinct) primes, then \(G \) is solvable. You may assume that the commutator subgroup of a group is normal. You may also assume that \(A_n \) is simple for each \(n > 4 \). Prove everything else that you use or claim in your arguments.

(a) If \(p \) is prime and \(i \geq 0 \) is an integer, prove that a group \(G \) of order \(p^i \) is solvable.

(b) Find the least positive integer \(n \) such that there is a non-solvable group of order \(n \). Justify your answer; in particular, justify that all groups of order less than \(n \) are solvable.

(I.3) Find all integers \(0 < n < 20 \) such that there exists a non-nilpotent group of order \(n \). Justify your answer. (You may assume whatever general facts you know about nilpotent groups, but explicitly state any fact you use. If you claim a particular group is or is not nilpotent, either give a proof or cite a general fact that justifies your claim.)

Part II: Fields and Galois Theory

(II.4) Let \(F/k \) be an extension of fields such that \(|k| = 3^6 \) and \(|F| = 3^{60} \). How many elements \(\alpha \in F \) are there with \(k(\alpha) = F \)? Justify your answer.

(II.5) Let \(F \) be a finite (but not necessarily Galois) extension of a field \(K \). Given a subgroup \(G < \text{Aut}_K(F) \), let \(F^G \) denote the intermediate field \(\{ f \in F : g(f) = f \text{ for all } g \in G \} \).
(a) Let $G < \text{Aut}_K(F)$ be a subgroup. Prove Artin’s theorem that F/F^G is a finite Galois extension with Galois group G.

(b) Let S be the set of subgroups of $\text{Aut}_K(F)$ and let I be the set of intermediate fields of the extension. Define a map $\phi : S \rightarrow I$ for any $G \in S$ by setting $\phi(G) = F^G$. Show that ϕ is always injective and give an example to show that ϕ need not be surjective.

(II.6) Determine the group $\text{Aut}(\mathbb{R})$ of field automorphisms of the reals. [Hint: Prove for any automorphism σ that $\sigma(x) < \sigma(y)$ for any reals $x < y$.]

Part III: Rings and Modules

(III.7) Let G be a finite group and let \mathbb{C} denote the field of complex numbers. Show that $R = \mathbb{C}[G]$ has a nonzero nilpotent element if and only if G is a nonabelian group.

(III.8) Let A be a commutative ring with $1 \neq 0$. Let M and N be A-modules. Show that $M \oplus N$ is flat if and only if M and N are flat.

(III.9) Compute the number of elements in the \mathbb{Z}-module $A \otimes \mathbb{Z} \text{Hom}_\mathbb{Z}(M \oplus N, P \oplus Q)$, where $A = S^{-1}\mathbb{Z}$, $S = \{1, 5, 5^2, \ldots\}$, $M = \mathbb{Z}/9\mathbb{Z}$, $N = \mathbb{Z}/5\mathbb{Z}$, $P = \mathbb{Z}/3\mathbb{Z}$ and $Q = \mathbb{Z}/25\mathbb{Z}$. Justify your answer.